# Information flow in a kinetic Ising model peaks in the disordered phase: Supplemental material 

Lionel Barnett, ${ }^{1, *}$ Joseph T. Lizier, ${ }^{2, \dagger}$ Michael Harré, ${ }^{3,}{ }^{\ddagger}$ Anil K. Seth, ${ }^{1, \S}$ and Terry Bossomaier ${ }^{4, ~}{ }^{\mathbb{}}$<br>${ }^{1}$ Sackler Centre for Consciousness Science, School of Informatics, University of Sussex, Brighton BN1 9QJ, UK<br>${ }^{2}$ CSIRO Computational Informatics, PO Box 76, Epping, NSW 1710, Australia<br>${ }^{3}$ School of Civil Engineering, The University of Sydney, Sydney NSW 2006, Australia<br>${ }^{4}$ Centre for Research in Complex Systems, Charles Sturt University, Panorama Ave, Bathurst NSW 2795, Australia

(Dated: September 12, 2013)

## 1: CALCULATION OF PAIRWISE MUTUAL INFORMATION

It is clear from homogeneity that $S_{i}$ has the same distribution for any site $i$ and, similarly, that $S_{i}, S_{j}$ have the same joint distribution for any pair of neighbouring sites $i, j$. Thus we have $I_{p w}=\mathrm{I}\left(S_{i}: S_{j}\right)=2 \mathrm{H}\left(S_{i}\right)-\mathrm{H}\left(S_{i}, S_{j}\right)$ for any fixed choice of lattice neighbours $i, j$ (we note, though, that in sample the lattice-averaged form will yield a more efficient estimator). Firstly, $\mathrm{H}\left(S_{i}\right)=-\sum_{\sigma} p_{\sigma} \log p_{\sigma}$ where $p_{\sigma} \equiv \mathbf{P}\left(S_{i}=\sigma\right)$ and the sum is over spins $\sigma= \pm 1$. Firstly, we show that $p_{\sigma}$ is as given in [1], eq. 6. In the calculations that follow, we make frequent use of the identity

$$
\begin{equation*}
\delta\left(\sigma, \sigma^{\prime}\right)=\frac{1}{2}\left(1+\sigma \sigma^{\prime}\right) \tag{1}
\end{equation*}
$$

for spins $\sigma, \sigma^{\prime}= \pm 1$. We have

$$
\begin{aligned}
\mathbf{P}\left(S_{i}=\sigma\right) & =\sum_{s} \mathbf{P}(\boldsymbol{S}=\boldsymbol{s}) \mathbf{P}\left(S_{i}=\sigma \mid \boldsymbol{S}=\boldsymbol{s}\right) \quad \text { conditioning on } \boldsymbol{S} \\
& =\sum_{s} \Pi(\boldsymbol{s}) \delta\left(s_{i}, \sigma\right) \\
& =\sum_{s} \Pi(\boldsymbol{s}) \cdot \frac{1}{2}\left(1+\sigma s_{i}\right) \quad \text { by (1) } \\
& =\frac{1}{2}\left(1+\sigma\left\langle S_{i}\right\rangle\right) \rightarrow \frac{1}{2}(1+\sigma \mathcal{M}) \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

as required. Next we show that $p_{\sigma \sigma^{\prime}}$ is also as in [1], eq. 6. We have $\mathrm{H}\left(S_{i}, S_{j}\right)=-\sum_{\sigma, \sigma^{\prime}} p_{\sigma \sigma^{\prime}} \log p_{\sigma \sigma^{\prime}}$ where $p_{\sigma \sigma^{\prime}} \equiv \mathbf{P}\left(S_{i}=\sigma, S_{j}=\sigma^{\prime}\right)$, and

$$
\begin{aligned}
\mathbf{P}\left(S_{i}=\sigma, S_{j}=\sigma^{\prime}\right) & =\sum_{s} \mathbf{P}(\boldsymbol{S}=\boldsymbol{s}) \mathbf{P}\left(S_{i}=\sigma, S_{j}=\sigma^{\prime} \mid \boldsymbol{S}=\boldsymbol{s}\right) \\
& =\sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right) \delta\left(s_{j}, \sigma^{\prime}\right) \\
& =\frac{1}{4} \sum_{s} \Pi(s)\left(1+\sigma s_{i}+\sigma^{\prime} s_{j}+\sigma \sigma^{\prime} s_{i} s_{j}\right) \\
& =\frac{1}{4}\left(1+\sigma\left\langle S_{i}\right\rangle+\sigma^{\prime}\left\langle S_{j}\right\rangle+\sigma \sigma^{\prime}\left\langle S_{i} S_{j}\right\rangle\right) \rightarrow \frac{1}{4}\left[1+\left(\sigma+\sigma^{\prime}\right) \mathcal{M}-\frac{1}{2} \sigma \sigma^{\prime} \mathcal{U}\right] \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

as required. In the last step, we use $\left\langle S_{i} S_{j}\right\rangle \rightarrow-\frac{1}{2} \mathcal{U}$ as $N \rightarrow \infty$, which follows from $\mathcal{U}=\frac{1}{N}\langle\mathcal{H}(\boldsymbol{S})\rangle$. $I_{p w}$ is thus as in [1], eq. 5 . Note that for $T<T_{c}$ the sign of $\mathcal{M}$ does not affect the result; i.e. $I_{p w}$ is invariant to the direction in which symmetry breaks (this applies to the other information measures too).

## 2: CALCULATION OF PAIRWISE TRANSFER ENTROPY

We start by proving the following lemma: for arbitrary lattice neighbours $i, j$,

$$
\begin{align*}
\left\langle S_{i} P_{i}(\boldsymbol{S})\right\rangle & \equiv 0  \tag{2}\\
\left\langle S_{i} S_{j} P_{i}(\boldsymbol{S})\right\rangle & \equiv 0  \tag{3}\\
\left\langle S_{j} P_{i}(\boldsymbol{S})\right\rangle & \equiv 0 \quad \text { for } T \geq T_{c} \text { only } . \tag{4}
\end{align*}
$$

Let $\Lambda_{i}^{+} \equiv\left\{\boldsymbol{s} \mid s_{i}=+1\right\}$ and $\Lambda_{i}^{-} \equiv\left\{\boldsymbol{s} \mid s_{i}=-1\right\}$. Then

$$
\begin{aligned}
\left\langle S_{i} P_{i}(\boldsymbol{S})\right\rangle= & \sum_{\boldsymbol{s}} \Pi(\boldsymbol{s}) s_{i} P_{i}(\boldsymbol{s}) \\
= & \frac{1}{Z} \sum_{s \in \Lambda_{i}^{+}} e^{-\beta \mathcal{H}(\boldsymbol{s})} P_{i}(\boldsymbol{s})-\frac{1}{Z} \sum_{\boldsymbol{s} \in \Lambda_{i}^{-}} e^{-\beta \mathcal{H}(\boldsymbol{s})} P_{i}(\boldsymbol{s}) \\
& \quad \text { Now we note that as } s \text { runs through } \Lambda_{i}^{+}, \boldsymbol{s}^{i} \text { runs through } \Lambda_{i}^{-} \\
= & \frac{1}{Z} \sum_{s \in \Lambda_{i}^{+}} e^{-\beta \mathcal{H}(\boldsymbol{s})} P_{i}(\boldsymbol{s})-\frac{1}{Z} \sum_{\boldsymbol{s} \in \Lambda_{i}^{+}} e^{-\beta \mathcal{H}\left(s^{i}\right)} P_{i}\left(s^{i}\right) \\
= & \frac{1}{Z} \sum_{\boldsymbol{s} \in \Lambda_{i}^{+}}\left\{e^{-\beta \mathcal{H}(\boldsymbol{s})} \frac{1}{1+e^{\beta \Delta H_{i}(\boldsymbol{s})}}-e^{-\beta\left[\mathcal{H}(\boldsymbol{s})+\Delta H_{i}(\boldsymbol{s})\right]} \frac{1}{1+e^{-\beta \Delta H_{i}(\boldsymbol{s})}}\right\} \quad \text { using } \Delta H_{i}\left(s^{i}\right)=-\Delta H_{i}(\boldsymbol{s}) \\
= & \frac{1}{Z} \sum_{\boldsymbol{s} \in \Lambda_{i}^{+}} e^{-\beta \mathcal{H}(\boldsymbol{s})}\left\{\frac{1}{1+e^{\beta \Delta H_{i}(\boldsymbol{s})}}-\frac{e^{-\beta \Delta H_{i}(\boldsymbol{s})}}{1+e^{-\beta \Delta H_{i}(\boldsymbol{s})}}\right\} \\
= & 0
\end{aligned}
$$

proving (2). A similar argument works for (3). If $T \geq T_{c}$ then since symmetry is unbroken, for each equilibrium state there is a corresponding equilibrium state with all spins reversed. For spin-reversed states, $\Delta H_{i}(s)$, and hence $P_{i}(\boldsymbol{s})$, is unchanged, so that $s_{j} P_{i}(s)$ has the opposite sign; (4) thus follows.

By homogeneity, the joint distribution of $S_{i}(t), S_{i}(t-1), S_{j}(t-1)$ is the same for any fixed pair of neighbouring sites $i, j$ and we have $\mathcal{T}_{p w}=\mathrm{H}\left(S_{i}(t) \mid S_{i}(t-1)\right)-\mathrm{H}\left(S_{i}(t) \mid S_{i}(t-1), S_{j}(t-1)\right)$. Firstly, $\mathrm{H}\left(S_{i}(t) \mid S_{i}(t-1)\right)=$ $-\sum_{\sigma} p_{\sigma} \sum_{\sigma^{\prime}} p_{\sigma^{\prime} \mid \sigma} \log p_{\sigma^{\prime} \mid \sigma}$, where we define $p_{\sigma^{\prime} \mid \sigma} \equiv \mathbf{P}\left(S_{i}(t)=\sigma^{\prime} \mid S_{i}(t-1)=\sigma\right)$. In the calculations that follow, we make use of the following explicit expression for the Markov transition probabilities in the Glauber kinetic model:

$$
P\left(s^{\prime} \mid s\right)= \begin{cases}1-\frac{1}{N} \sum_{k} P_{k}(s) & s^{\prime}=s  \tag{5}\\ \frac{1}{N} P_{j}(s) & s^{\prime}=s^{j} \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
\begin{align*}
& \mathbf{P}\left(S_{i}(t)=\sigma^{\prime}, S_{i}(t-1)=\sigma\right) \\
& =\sum_{s, s^{\prime}} \mathbf{P}\left(S_{i}(t)=\sigma^{\prime}, S_{i}(t-1)=\sigma \mid \boldsymbol{S}(t)=s^{\prime}, \boldsymbol{S}(t-1)=\boldsymbol{s}\right) \mathbf{P}\left(\boldsymbol{S}(t)=s^{\prime}, \boldsymbol{S}(t-1)=\boldsymbol{s}\right) \\
& =\sum_{\boldsymbol{s}} \Pi(\boldsymbol{s}) \delta\left(s_{i}, \sigma\right) \sum_{\boldsymbol{s}^{\prime}} \delta\left(s_{i}^{\prime}, \sigma^{\prime}\right) P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}\right) \\
& =\sum_{\boldsymbol{s}} \Pi(\boldsymbol{s}) \delta\left(s_{i}, \sigma\right)\left\{\delta\left(s_{i}, \sigma^{\prime}\right)\left[1-\frac{1}{N} \sum_{j} P_{j}(\boldsymbol{s})\right]+\sum_{j} \delta\left(s_{i}^{j}, \sigma^{\prime}\right) \frac{1}{N} P_{j}(\boldsymbol{s})\right\} \quad \text { by }(5)  \tag{5}\\
& =\sum_{s} \Pi(\boldsymbol{s}) \delta\left(s_{i}, \sigma\right)\left\{\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N} \sum_{j}\left[\delta\left(s_{i}, \sigma^{\prime}\right)-\delta\left(s_{i}^{j}, \sigma^{\prime}\right)\right] P_{j}(\boldsymbol{s})\right\}
\end{align*}
$$

Note that the term in square brackets vanishes unless $j=i$

$$
\begin{aligned}
& =\sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right)\left\{\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N}\left[\delta\left(s_{i}, \sigma^{\prime}\right)-\delta\left(s_{i}^{i}, \sigma^{\prime}\right)\right] P_{i}(s)\right\} \\
& =\sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right)\left\{\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N} \sigma^{\prime} s_{i} P_{i}(s)\right\} \quad \text { since } s_{i}^{i}=-s_{i} \\
& =\sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right) \delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N} \sigma \sigma^{\prime} \sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right) P_{i}(s)
\end{aligned}
$$

$$
\begin{aligned}
& =\delta\left(\sigma, \sigma^{\prime}\right) \sum_{s} \Pi(s) \delta\left(s_{i}, \sigma\right)-\frac{1}{N} \sigma \sigma^{\prime} \sum_{s} \Pi(s) \frac{1}{2}\left(1+\sigma s_{i}\right) P_{i}(\boldsymbol{s}) \\
& =\delta\left(\sigma, \sigma^{\prime}\right) p_{\sigma}-\frac{1}{N} \sigma \sigma^{\prime} \frac{1}{2}\left(\left\langle P_{i}(\boldsymbol{S})\right\rangle+\sigma\left\langle S_{i} P_{i}(\boldsymbol{S})\right\rangle\right) \\
& =\delta\left(\sigma, \sigma^{\prime}\right) p_{\sigma}-\frac{1}{N} \sigma \sigma^{\prime} q \quad \text { since by }(2)\left\langle S_{i} P_{i}(\boldsymbol{S})\right\rangle \text { vanishes, }
\end{aligned}
$$

with $q$ as in [1], eq. 11. So

$$
p_{\sigma^{\prime} \mid \sigma}=\left\{\begin{array}{ll}
1-\frac{1}{N} \frac{q}{p_{\sigma}} & \sigma^{\prime}=\sigma  \tag{6}\\
\frac{1}{N} \frac{q}{p_{\sigma}} & \sigma^{\prime}=-\sigma
\end{array} .\right.
$$

Next, $\quad \mathrm{H}\left(S_{i}(t) \mid S_{i}(t-1), S_{j}(t-1)\right) \quad=\quad-\sum_{\sigma, \sigma^{\prime}} p_{\sigma \sigma^{\prime}} \sum_{\sigma^{\prime \prime}} p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}} \log p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}}, \quad$ where we define $\quad p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}} \equiv$ $\mathbf{P}\left(S_{i}(t)=\sigma^{\prime \prime} \mid S_{i}(t-1)=\sigma, S_{j}(t-1)=\sigma^{\prime}\right)$, and we may calculate along the same lines as above (we omit details) that

$$
p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}}= \begin{cases}1-\frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}} & \sigma^{\prime \prime}=\sigma  \tag{7}\\ \frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}} & \sigma^{\prime \prime}=-\sigma\end{cases}
$$

with $q_{\sigma^{\prime}}$ again as in [1], eq. 11. Now, working to $\boldsymbol{O}\left(\frac{1}{N}\right)$,

$$
\begin{aligned}
\mathcal{T}_{p w}= & -\sum_{\sigma} p_{\sigma} \sum_{\sigma^{\prime}} p_{\sigma^{\prime} \mid \sigma} \log p_{\sigma^{\prime} \mid \sigma}+\sum_{\sigma, \sigma^{\prime}} p_{\sigma \sigma^{\prime}} \sum_{\sigma^{\prime \prime}} p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}} \log p_{\sigma^{\prime \prime} \mid \sigma \sigma^{\prime}} \\
= & -\sum_{\sigma} p_{\sigma}\left(p_{\sigma \mid \sigma} \log p_{\sigma \mid \sigma}+p_{-\sigma \mid \sigma} \log p_{-\sigma \mid \sigma}\right) \\
& +\sum_{\sigma, \sigma^{\prime}} p_{\sigma \sigma^{\prime}}\left(p_{\sigma \mid \sigma \sigma^{\prime}} \log p_{\sigma \mid \sigma \sigma^{\prime}}+p_{-\sigma \mid \sigma \sigma^{\prime}} \log p_{-\sigma \mid \sigma \sigma^{\prime}}\right) \\
= & -\sum_{\sigma} p_{\sigma}\left[\left(1-\frac{1}{N} \frac{q}{p_{\sigma}}\right) \log \left(1-\frac{1}{N} \frac{q}{p_{\sigma}}\right)+\frac{1}{N} \frac{q}{p_{\sigma}} \log \left(\frac{1}{N} \frac{q}{p_{\sigma}}\right)\right] \\
& +\sum_{\sigma, \sigma^{\prime}} p_{\sigma \sigma^{\prime}}\left[\left(1-\frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}}\right) \log \left(1-\frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}}\right)+\frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}} \log \left(\frac{1}{N} \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}}\right)\right] \\
= & -\frac{1}{N} \sum_{\sigma} q\left(\log \frac{q}{p_{\sigma}}-\log N-1\right)+\frac{1}{N} \sum_{\sigma, \sigma^{\prime}} q_{\sigma^{\prime}}\left(\log \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}}-\log N-1\right)+\boldsymbol{O}\left(\frac{1}{N^{2}}\right) \\
= & -\frac{1}{N} \sum_{\sigma} q \log \frac{q}{p_{\sigma}}+\frac{1}{N} \sum_{\sigma, \sigma^{\prime}} q_{\sigma^{\prime}} \log \frac{q_{\sigma^{\prime}}}{p_{\sigma \sigma^{\prime}}}+\boldsymbol{O}\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where in the penultimate step we use $\log (1+x / N)=x / N+\boldsymbol{O}\left(1 / N^{2}\right)$ as $N \rightarrow \infty$ and in the last step we use the identity $\sum_{\sigma^{\prime}} q_{\sigma^{\prime}} \equiv q$, which follows directly from [1], eq. 11, so that the ( $\log N+1$ ) terms cancel. Thus in the thermodynamic limit, we obtain [1], eq. 10.

## 3: CALCULATION OF GLOBAL TRANSFER ENTROPY

Once again by homogeneity we have $\mathcal{T}_{g l}=\mathrm{H}\left(S_{i}(t) \mid S_{i}(t-1)\right)-\mathrm{H}\left(S_{i}(t) \mid \boldsymbol{S}(t-1)\right)$ for any fixed site $i$. The first term has been calculated above and for the second term $\mathrm{H}\left(S_{i}(t) \mid \boldsymbol{S}(t-1)\right)=-\sum_{\boldsymbol{s}} \Pi(\boldsymbol{s}) \sum_{\sigma^{\prime}} p_{i}\left(\sigma^{\prime} \mid \boldsymbol{s}\right) \log p_{i}\left(\sigma^{\prime} \mid \boldsymbol{s}\right)$
where $p_{i}\left(\sigma^{\prime} \mid \boldsymbol{s}\right) \equiv \mathbf{P}\left(S_{i}(t)=\sigma^{\prime} \mid \boldsymbol{S}(t-1)=\boldsymbol{s}\right)$. We have

$$
\begin{aligned}
\mathbf{P}\left(S_{i}(t)=\sigma^{\prime} \mid \boldsymbol{S}(t-1)=\boldsymbol{s}\right) & =\sum_{\boldsymbol{s}^{\prime}} \mathbf{P}\left(S_{i}(t)=\sigma^{\prime} \mid \boldsymbol{S}(t-1)=\boldsymbol{s}, \boldsymbol{S}(t)=\boldsymbol{s}^{\prime}\right) \mathbf{P}\left(\boldsymbol{S}(t)=\boldsymbol{s}^{\prime} \mid \boldsymbol{S}(t-1)=\boldsymbol{s}\right) \\
& =\sum_{\boldsymbol{s}^{\prime}} \delta\left(s_{i}^{\prime}, \sigma^{\prime}\right) P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}\right) \quad \text { again, } \boldsymbol{s}^{\prime}=\boldsymbol{s} \text { or } \boldsymbol{s}^{\prime}=\boldsymbol{s}^{j} \text { for some } j \\
& =\delta\left(s_{i}, \sigma^{\prime}\right)\left[1-\frac{1}{N} \sum_{j} P_{j}(\boldsymbol{s})\right]+\sum_{j} \delta\left(s_{i}^{j}, \sigma^{\prime}\right) \frac{1}{N} P_{j}(\boldsymbol{s}) \\
& =\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N} \sum_{j}\left[\delta\left(s_{i}, \sigma^{\prime}\right)-\delta\left(s_{i}^{j}, \sigma^{\prime}\right)\right] P_{j}(\boldsymbol{s}) \\
& =\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N}\left[\delta\left(s_{i}, \sigma^{\prime}\right)-\delta\left(s_{i}^{i}, \sigma^{\prime}\right)\right] P_{i}(\boldsymbol{s}) \\
& =\delta\left(s_{i}, \sigma^{\prime}\right)-\frac{1}{N} \sigma^{\prime} s_{i} P_{i}(\boldsymbol{s}),
\end{aligned}
$$

So

$$
p_{i}\left(\sigma^{\prime} \mid \boldsymbol{s}\right)=\left\{\begin{array}{ll}
1-\frac{1}{N} P_{i}(\boldsymbol{s}) & \sigma^{\prime}=s_{i}  \tag{8}\\
\frac{1}{N} P_{i}(\boldsymbol{s}) & \sigma^{\prime}=-s_{i}
\end{array} .\right.
$$

By an argument analogous to that for the pairwise case,

$$
\begin{aligned}
\mathcal{T}_{g l} & =-\frac{1}{N} \sum_{\sigma} q\left(\log \frac{q}{p_{\sigma}}-\log N-1\right)+\frac{1}{N} \sum_{\boldsymbol{s}} \Pi(\boldsymbol{s}) P_{i}(\boldsymbol{s})\left[\log P_{i}(\boldsymbol{s})-\log N-1\right]+\boldsymbol{O}\left(\frac{1}{N^{2}}\right) \\
& =-\frac{1}{N} \sum_{\sigma} q \log \frac{q}{p_{\sigma}}+\frac{1}{N}\left\langle P_{i}(\boldsymbol{S}) \log P_{i}(\boldsymbol{S})\right\rangle+\boldsymbol{O}\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where in the last step we use $\sum_{s} \Pi(s) P_{i}(s)=\left\langle P_{i}(s)\right\rangle=2 q$, so that again the $(\log N+1)$ terms cancel. Thus in the thermodynamic limit we obtain [1], eq. 13.

## 4: GRADIENT OF MUTUAL INFORMATION MEASURES AT CRITICALITY

In the thermodynamic limit $\mathcal{M} \equiv 0$ for $\beta \leq \beta_{c}$, so that $-\sum_{\sigma} p_{\sigma} \log p_{\sigma}$ is constant with respect to $\beta$ and $p_{\sigma \sigma^{\prime}}=$ $\frac{1}{4}\left(1-\frac{1}{2} \sigma \sigma^{\prime} \mathcal{U}\right)$. Thus from [1] , eqs. 5,8 we may calculate that up to a constant

$$
\begin{align*}
I_{p w} & =\frac{1}{2}\left(1+\frac{1}{2} \mathcal{U}\right) \log \left(1+\frac{1}{2} \mathcal{U}\right)+\frac{1}{2}\left(1-\frac{1}{2} \mathcal{U}\right) \log \left(1-\frac{1}{2} \mathcal{U}\right)  \tag{9}\\
\frac{1}{N} I_{g l} & =-\beta(\mathcal{U}-\mathcal{F}) \tag{10}
\end{align*}
$$

For convenience we change to the variable $x \equiv 2 \beta$, and denote partial differentiation with respect to $x$ by a prime. From $\mathcal{U}=\frac{\partial}{\partial \beta}(\beta \mathcal{F})$ we find

$$
\begin{align*}
I_{p w}^{\prime} & =\frac{1}{4} \log \left(\frac{1+\frac{1}{2} \mathcal{U}}{1-\frac{1}{2} \mathcal{U}}\right) \cdot \mathcal{U}^{\prime}  \tag{11}\\
\frac{1}{N} I_{g l}^{\prime} & =-\frac{1}{2} x \mathcal{U}^{\prime} \tag{12}
\end{align*}
$$

We want to evaluate these quantities as $x \rightarrow x_{c}$ from below, where $x_{c} \equiv 2 \beta_{c}=\log (\sqrt{2}+1)$. We thus set $x=x_{c}-\varepsilon$ and let $\varepsilon \rightarrow 0$ from above. Setting $\kappa \equiv 2 \frac{\sinh x}{\cosh ^{2} x}$ we have ([1], TABLE I)

$$
\begin{equation*}
\mathcal{U}=-\operatorname{coth} x\left[1+\frac{2}{\pi}(\kappa \sinh x-1) K(\kappa)\right] \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
K(\kappa) \equiv \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-\kappa^{2} \sin ^{2} \theta}} \tag{14}
\end{equation*}
$$

is the complete elliptic integral of the first kind [2]. Working to $\boldsymbol{O}(\varepsilon)$, we may calculate

$$
\begin{align*}
\sinh x & =1-\sqrt{2} \varepsilon+\boldsymbol{O}\left(\varepsilon^{2}\right)  \tag{15}\\
\cosh x & =\sqrt{2}-\varepsilon+\boldsymbol{O}\left(\varepsilon^{2}\right)  \tag{16}\\
\tanh x & =\frac{1}{\sqrt{2}}-\frac{1}{2} \varepsilon+\boldsymbol{O}\left(\varepsilon^{2}\right)  \tag{17}\\
\operatorname{coth} x & =\sqrt{2}+\varepsilon+\boldsymbol{O}\left(\varepsilon^{2}\right) \tag{18}
\end{align*}
$$

and to $\boldsymbol{O}\left(\varepsilon^{2}\right)$

$$
\begin{equation*}
\kappa=1-\varepsilon^{2}+\boldsymbol{O}\left(\varepsilon^{3}\right) \tag{19}
\end{equation*}
$$

First we evaluate $\mathcal{U}$ as $x \rightarrow x_{c}$ from below. From (13) we have

$$
\begin{equation*}
\mathcal{U}=-(\sqrt{2}+\varepsilon)\left[1-\frac{2 \sqrt{2}}{\pi} \cdot \varepsilon K\left(1-\varepsilon^{2}\right)\right]+\boldsymbol{O}\left(\varepsilon^{2}\right) \tag{20}
\end{equation*}
$$

Now $K\left(1-\varepsilon^{2}\right) \rightarrow \infty$ logarithmically as $\varepsilon \rightarrow 0$ [3], so that $\varepsilon K\left(1-\varepsilon^{2}\right) \rightarrow 0$ and $\mathcal{U} \rightarrow-\sqrt{2}$ as $x \rightarrow x_{c}$ from below. Thus from (11) and (12) we see that both $I_{p w}^{\prime}$ and $\frac{1}{N} I_{g l}^{\prime} \rightarrow-\frac{1}{2} x_{c} \mathcal{U}^{\prime}$ as $x \rightarrow x_{c}$ from below. From (13) a straightforward calculation yields

$$
\begin{equation*}
\mathcal{U}^{\prime}=-\frac{1}{\sinh x \cosh x} \mathcal{U}-\frac{8}{\pi} \frac{1}{\cosh ^{2} x} K(\kappa)+\frac{4}{\pi} \frac{(\kappa \sinh x-1)^{2}}{\sinh x} K^{\prime}(\kappa) \tag{21}
\end{equation*}
$$

Now

$$
\begin{equation*}
K^{\prime}(\kappa)=\frac{1}{\kappa\left(1-\kappa^{2}\right)} E(\kappa)-\frac{1}{\kappa} K(\kappa) \tag{22}
\end{equation*}
$$

[2] where

$$
\begin{equation*}
E(\kappa) \equiv \int_{0}^{\pi / 2} \sqrt{1-\kappa^{2} \sin ^{2} \theta} d \theta \tag{23}
\end{equation*}
$$

is the complete elliptic integral of the second kind [2]. Some algebra yields

$$
\begin{equation*}
\mathcal{U}^{\prime}=-\frac{1}{\sinh x \cosh x} \mathcal{U}+\frac{4}{\pi} \frac{(\kappa \sinh x-1)^{2}}{\kappa\left(1-\kappa^{2}\right) \sinh x} E(\kappa)-\frac{2}{\pi} \operatorname{coth}^{2} x K(\kappa) \tag{24}
\end{equation*}
$$

Using $E(1)=1$ [2], we find

$$
\begin{equation*}
\mathcal{U}^{\prime} \rightarrow 1+\frac{4}{\pi}-\frac{4}{\pi} K(\kappa) \tag{25}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. But $K(\kappa) \rightarrow \infty$ logarithmically as $\kappa \rightarrow 1$, so $\mathcal{U}^{\prime} \rightarrow-\infty$ which implies $\frac{\partial I_{p w}}{\partial \beta}, \frac{1}{N} \frac{\partial I_{g l}}{\partial \beta} \rightarrow+\infty$ as $\beta \rightarrow \beta_{c}$ from below and finally, since $\frac{\partial}{\partial \beta}=-T^{2} \frac{\partial}{\partial T}$, we have $\frac{\partial I_{p w}}{\partial T}, \frac{1}{N} \frac{\partial I_{g l}}{\partial T} \rightarrow-\infty$ logarithmically as $T \rightarrow T_{c}$ from above.

[^0]§ Electronic address: a.k.seth@sussex.ac.uk
『 Electronic address: tbossomaier@csu.edu.au
[1] L. Barnett, T. Bossomaier, J. T. Lizier, M. Harré, and A. K. Seth, Phys. Rev. Lett. [vol], [pp] (2013).
[2] L. M. Milne-Thomson, in Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (9th ed.), edited by M. Abramowitz and I. A. Stegun (Dover Publications, New York, 1972), chap. 17.
[3] D. Karp and S. M. Sitnik, J. Comput. Appl. Math. 205, 186 (2007).


[^0]:    * Electronic address: l.c.barnett@sussex.ac.uk
    $\dagger$ Electronic address: joseph.lizier@csiro.au
    $\ddagger$ Electronic address: michael.harre@sydney.edu.au

