
Reombination and Bistability in Finite PopulationsLionel BarnettCentre for the Study of EvolutionCentre for Computational Neurosiene and RobotisShool of Cognitive and Computing SienesUniversity of SussexBrighton BN1 9QH, UKlionelb�ogs.susx.a.ukSeptember 29, 1998AbstratIn this paper we analyse the phenomenon of \bistability" in �nite population evolution-ary dynamis, espeially with regard to reombination. Bistability, where the steady-state population distribution depends on the initial state of the population, has reentlybeen observed in an (in�nite population) quasi-speies model of viral reombination(Boerlijst et al., 1996). We analyse a omparable �nite population model using a birthand death proess due to (Moran, 1958). Bistability (or its stohasti analogue) isrevealed in the bimodality of the stationary probability distribution of the birth anddeath proess and long mean transition times between the modes. These e�ets aredemonstrated to be exaggerated by reombination.1 IntrodutionIn (Boerlijst et al., 1996) a mathematial model for an asexual (haploid) quasi-speies (Eigenet al., 1989) evolving with reombination is introdued to study reombination in retro-viruspopulations. The model is analyzed on several simple �tness landsapes. A striking featureof the model is the appearane of \bistability" or \hysteresis" in the steady-state populationdistribution for partiular ombinations of mutation rate and reombination rate; i.e. thesteady-state distribution of genotypes depends on the distribution of genotypes in the initialpopulation. This phenomenon has also been observed in various diploid models, both withand without reombination. In (Boerlijst et al., 1996) bistability in their (in�nite-population,hene deterministi) model is explained in terms of bifuration of the di�erential equationsdesribing the time-evolution of the quasi-speies. A reent empirial study (Ohoa and Har-vey, 1999) suggests strongly that many qualitative features of the in�nite-population modelare preserved in the orresponding �nite-population dynamis. In this paper we investigatebistability in �nite-population stohasti population dynamis. The model we use is basedon a birth and death proess originally devised by (Moran, 1958) and previously deployed ina situation analogous to ours (but without reombination) by (Nowak and Shuster, 1989).1



2 The Moran ModelIn (Moran, 1958) a model for the evolution of a �xed-size �nite population of genotypes wasintrodued, based on the idea of �tness as the expeted (reprodutive) lifetime of a genotype.Here we extend the model to arbitrary �tness landsapes and to inlude reombination.Let Q� represent the �-dimensional binary hyperube; i.e. an element of Q� is a bi-nary sequene of length �, whih we identify with a haploid genotype. We speify a �tnesslandsape on Q� by assigning to eah g 2 Q� a (real-valued) �tness f(g) > 0. Considera population omprising N suh genotypes. We may identify suh a population with aninteger vetor n = (ng j g 2 Q�), where ng represents the number of opies of genotype gin the population, ng � 0 8g and Pg2Q� ng = N . We now de�ne a birth-death event onthe population n to be a transformation of n into a new population n0 as follows: a opy ofsome genotype g1 \dies" and a opy of another (possibly the same) genotype g2 is \born".In terms of the population vetors we have n0g1 = ng1 � 1 and n0g2 = ng2 + 1; the populationsize thus remains onstant.Suppose now that we have a stohasti proess fn(t) j t � 0g of populations (t representsa ontinuous time parameter) that evolves aording to the following sheme: in any timeinterval [t; t+ h℄ the probability that a opy of genotype g dies is given by (Moran, 1958):P (a opy of g dies in the interval [t; t+ h℄) = �f(g) ng(t)N h+ o (h) (1)where � is a �xed timesale parameter. It is straightforward to verify that the \lifetime"of a genotype g is exponentially distributed with expetation N� f(g). A death triggers animmediate birth, thus de�ning a birth-death event. Candidates for a birth are seleted asfollows: with probability 1 � � the birth is asexual and with probability � sexual, where0 � � � 1 is the reombination rate. For asexual reprodution a parent is seleted uniformlyat random and with replaement from the population. The o�spring is taken to be a opy ofthe parent mutated with per-allele probability � where 0 � � � 12 is the (per-allele) mutationrate. In the sexual ase two parents are independently seleted uniformly at random andwith replaement from the population. The parents are mated by uniform reombination;i.e. independently for eah lous on the genotype, one of the parents is hosen at randomand its allele (0 or 1) beomes the allele of the o�spring at that lous. After reombinationthe o�spring is mutated with mutation rate � as in the asexual ase. It may also be veri�edthat the expeted number of o�spring of a given genotype during its lifetime is proportionalto its �tness. To see this, note that for a given genotype the times between its suessiveseletions as a parent are (identially and independently) exponentially distributed. Thusthe number of o�spring of a genotype from its birth up to a given time t onstitutes a Poissonproess (Stirzaker, 1994). From this and the exponential distribution of lifetimes the resultfollows by a straightforward alulation. In this sense, seletion in the Moran model is �tnessproportional.It is lear that fn(t) j t � 0g thus de�ned is a Markovian birth and death proess withstate spae the (vast!) set of all possible populations of size N . Beause of the huge sizeand awkward struture of the state spae it is diÆult to say anything useful about suh aproess. In the next setion we speialise to a spei� simple �tness landsape and, with thehelp of some judiious approximations, redue the state spae to a tratable form.
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3 The Single-peak Fitness LandsapeWe speify a single-peak �tness landsape as follows: all genotypes have �tness 1 exept fora single genotype, the \peak" or optimal genotype1. whih has �tness � where � > 1 isthe seletion oeÆient. Without loss of generality we take the optimal genotype to be thesequene of � zeroes. For � = 0; 1; 2; : : : ; � let us de�ne (Eigen et al., 1989) the error lassE� � Q� to be the set of all genotypes Hamming distane � from the optimum; i.e. withexatly � bits set. The E� with � > 0 are said to onstitute the error tail.Given a Moran birth and death proess as desribed above on suh a landsape, we willbe interested in the number X(t) of opies of the optimal genotype present in the populationat time t. It would be onvenient if the proess fX(t) j t � 0g were also a Markov pro-ess - unfortunately it is lear that the Markov property does not hold. This is beause theprobability that a non-optimal genotype (i.e. a genotype in the error tail) mutates to theoptimal genotype depends on the distribution of genotypes over the error lasses; withoutknowing this distribution we annot know the probability that a birth will be optimal. In(Nowak and Shuster, 1989) this issue is addressed by making a \maximum entropy" approx-imation; spei�ally, it is assumed that a genotype in the error tail is as likely to be any one(non-optimal) genotype as another; i.e. that the distribution of genotypes in the error tail isalways uniform random. This implies that at any time, � = 0; 1; 2; : : : ; �:P (g 2 E� j g 2 error tail) = ����� (2)and P (an arbitrary bit of g is set j g 2 E�) = �� (3)where, following (Nowak and Shuster, 1989), we have set � � 12� � 1. Note that (3) impliesthe absene of linkage disequilibrium between loi.Under the assumptions (2) and (3) fX(t) j t � 0g is indeed a Markovian ontinuous-time birth and death proess with state spae the set of integers from 0 to N and retainingbarriers at 0 and N . If the mutation rate � is non-zero then the proess is also irreduible(Stirzaker, 1994) and thus has a unique stationary distribution (Karlin and Taylor, 1975).Suh proesses are quite well-understood and tratable to analysis; the question remains asto how well our approximation agrees with the original Moran birth and death proess. Itis, in fat, well-known that (2) does not hold in general (Nowak and Shuster, 1989; Boerlijstet al., 1996; Ohoa and Harvey, 1999). In partiular, at low mutation rates the distribution ofgenotypes over the error tail is skewed towards the optimum - this is more or less the de�ningharateristi of a quasi-speies! Furthermore, (3) will not in general hold due to neutral driftof the population (Kimura, 1983; Crow and Kimura, 1970; Derrida and Peliti, 1991) withinthe individual error lasses. These issues will be addressed in a future paper. SuÆe at thisstage to note that preliminary researh suggests that the behaviour of the model using themaximum entropy approximation agrees surprisingly well with the full model over a widerange of parameter values and that, in partiular, it appears to preserve at least qualitativelythe features addressed in this paper 2.1Generally known as the master sequene in the quasi-speies literature.2It is also worth pointing out that near the error threshold (Eigen et al., 1989) the approximation (2)beomes more aurate. This is reeted in the auray of the error threshold approximation alulated in(Nowak and Shuster, 1989).
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4 Analysis of the Birth and Death ProessWe are now in a position to alulate the in�nitesimal generators (Karlin and Taylor, 1975)of the simpli�ed birth and death proess fX(t) j t � 0g. To this end it suÆes to know theprobabilities:m1 = P (optimum mutates to optimum)m2 = P (non� optimum mutates to optimum)r11 = P (optimum reombined with optimum is optimum) (4)r12 = P (optimum reombined with non� optimum is optimum)r22 = P (non� optimum reombined with non� optimum is optimum)Using (2), (3) and the de�nition of uniform reombination a straightforward if tedious om-putation yields:m1 = Qm2 = �(1�Q)r11 = 1 (5)r12 = �r22 = �(1� 2�)where we have set Q � (1��)� and � � ( 32 )� � 12� � 1 . The in�nitesimal generators �i; �i of thebirth and death proess are de�ned by (Karlin and Taylor, 1975):P (X(t+ h) = i+ 1 j X(t) = i) = �i + o (h) i = 0; 1; : : : ; N � 1 (6)P (X(t+ h) = i� 1 j X(t) = i) = �i + o (h) i = 1; 2; : : : ; N (7)By onvention we de�ne �N � �0 � 0. For ompatness of notation let us also de�ne, fora; b = 1; 2: �ma � 1 �ma, �rab � 1 � rab, uab � m1rab +m2�rab and �uab � 1 � uab. Then,using (1) and the de�nition of the Moran proess, we alulate:�i = �N � iN �(1� �) �m1 iN +m2N � iN � ++ �"u11� iN �2 + 2u12 iN N � iN + u22�N � iN �2#) (8)�i = �� iN �(1� �) � �m1 iN + �m2N � iN � ++ �"�u11� iN �2 + 2�u12 iN N � iN + �u22�N � iN �2#) (9)These equations orrespond to equations (17) and (18) in (Nowak and Shuster, 1989)3.We an also now alulate the (unique) stationary probability distribution pi, i = 0; 1; 2; : : : ; Nof the proess (Karlin and Taylor, 1975; Stirzaker, 1994) as follows. Set:�0 = 1�i = �i�1�i �i�1 i = 1; 2; : : : ; N (10)3(Nowak and Shuster, 1989) use a slightly di�erent version of the Moran birth and death proess, perhapsto math the quasi-speies formalism more losely. The resulting models are qualitatively similar.4



Then we have, for i = 0; 1; : : : ; N :pi = �iPNj=0 �j (11)We will be interested in the mean �rst passage time (mfpt) (Karlin and Taylor, 1975) of theproess from state i to state j. This may be alulated as follows: let Ui denote the mfptfrom state i to state i + 1 (i = 0; 1; : : : ; N � 1) and Vi the mfpt from state i to state i � 1(i = 1; 2; : : : ; N). We then have the reurrene relations:U0 = 1�0Ui = 1�i (1 + �iUi�1) i = 1; 2; : : : ; N (12)and VN = 1�NVi = 1�i (1 + �iVi+1) i = 0; 1 : : : ; N � 1 (13)The mfpt from state i to state j for i < j is then given by Ui + Ui+1 + : : : + Uj�1 and fori > j by Vi + Vi�1 + : : :+ Vj+1. Note that the mfpt's annot be expressed solely in terms ofthe stationary probabilities; knowledge of the atual in�nitesimal generators is required.Finally, to simulate the birth and death proess we make use of the following (Karlin andTaylor, 1975): the proess waits in the state i for a period of time distributed exponentiallywith parameter �i +�i. It then makes a transition to state i+1 (if i < N ) with probability�i�i + �i , or to state i� 1 (if i > 0) with probability �i�i + �i .5 Behaviour of the ModelIn the results that follow we have used a short seqeune length (� = 10) and population size(N = 100) to make the pertinent features of the model learer. All results extend to highersequne lengths and larger populations. Fig. 1 below plots the stationary distribution of thebirth and death proess for a few values of the mutation rate, all other parameters remaining�xed. We see that at low mutation rates the optimum genotype frequeny is generally high;the proess spends most of its time with a high proportion of the population \on the spike".It appears unimodal, but there is atually another mode at 0, not visible at this sale. Ata slightly higher mutation rate the bimodality beomes more pronouned and the positionof the righmost mode shifts to a lower optimum genotype frequeny. At a ritial mutationrate above this an inexion point appears and the distribution beomes unimodal. Following(Nowak and Shuster, 1989) we identify this ritial mutation rate with the error threshold4.Beyond the error threshold the distribution is unimodal and the proess spends most of thetime with optimum genotype frequeny lose to zero. Figs. 2, 3 and 4 illustrate the e�etsof inreasing reombination rate on the dynamis of the proess in the sub-error thresholdregime. In eah ase the left-hand �gure shows the stationary probability distributionwhile the right-hand �gure plots the results of a simulation of the proess with the sameparameter values. In all �gures the (arbitrary) timesale � = 100, � = 2, � = 10 andN = 100. A subtlety in omparing the dynamis for di�erent values of � is that hanging the4Note that this is not the only possible de�nition of the error threshold for �nite populations. See e.g.(Forst et al., 1995). 5
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Figure 1: Stationary distribution of the birth and death proess for a few values of mutationrate �. Other parameters are: � = 10, N = 100, � = 4 and � = 0:3:reombination rate alters the shape of the stationary distribution. Indeed in (Boerlijst et al.,1996) and (Ohoa and Harvey, 1999) it is demonstrated that inreasing the reombinationrate lowers the error threshold. Thus to establish a baseline for omparison we followed thefollowing proedure: for eah value of � the mutation rate � was adjusted so that the medianof the stationary distribution oinides with the optimum genotype frequeny at whih thestationary distribution takes on its minimum value between the modes; thus the proessspends equal amounts of time in states above and below the optimum genotype frequenydividing the modes.Figs. 5 and 6 plot the between-mode minimum probability and right-hand mode optimumgenotype frequeny respetively against reombination rate. Fig. 7 plots the mfpt of theproess from the right-hand mode down to the zero state. Again in all �gures the mutationrate is adjusted so that the stationary median oinides with the between-modes minimum.In all plots � = 1, � = 4, � = 10 and N = 100.5The e�ets of inreasing the reombination rate now beome lear:1. The time spent by the proess in states between the modes dereases2. The optimum genotype frequeny of the right-hand mode inreases; the modes are\pulled apart"5The "wobbliness" of these plots is due to the fat that there is, for a given reombination rate, a (small)range of mutation rates for whih the median equals the between-modes minimum. There was thus someleeway in the preise hoie of mutation rate. 6
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3. The expeted waiting time for transitions between the modes \blows up" rapidlyConsider now, for example, the right-hand plot in Fig. 4 and suppose we were to wath theproess over a period of time very small ompared with the mean between-mode transitiontime. If we happened to observe the state at a given time to be near one mode it is likelythat we should never see it make a transition to the other mode; as far as we ould tell theproess would be settled in a unimodal steady state. If, however, as is equally likely (reallthat by onstrution the proess spends more or less equal amounts of time near eah mode),we happened to observe the proess near the other mode, we would onsider the proess tobe settled in a di�erent steady-state. In short, on a timesale small ompared to the meanbetween-modes transition time the proess appears bistable. We term this phenomenonstohasti bistability.We see from points 1 and 2 above that at low reombination rates it is more diÆultto \separate" the modes - it is thus more diÆult to disern a bistable situation (f. theright-hand plots in Figs. 2 and 3). From point 3 we see that for any given observationaltimesale we are less and less likely to see a transition between modes as the reombinationrate is inreased.6 ConlusionsWe have demonstrated that stohasti bistability arises in a �nite population as the result oftwo fators: bimodality of the steady-state distribution and between-mode transition timeslong ompared to the observer's timesale. We have seen that inreasing the reombinationrate aentuates both of these fators (in the sense of points 1-3 of the previous setion).It is of interest to note that, stritly speaking, this form of bistability is present in ourmodel even with no reombination present, albeit not readily disernible even at very shorttimesales due to the poor separation of the modes. We note that for any (Markovian)stohasti evolutionary proess whih is irreduible (and this would seem to inlude most�nite-population models in population biology) there is a unique stationary distribution. Forsuh proesses, therefore, it seems likely that bi- (or multi-) stability must always arise ina similar fashion to our model. Of ourse there are many stohasti evolutionary senariosthat annot be modelled by an irreduible Markov proess or, indeed, by a Markov proess.Nonetheless the phenomenon would appear to be very general.It would be of great interest to onnet the stohasti bistability observed in our modelwith the bistability observed in in�nite-population deterministi models. We speulate thatthere is a limiting proedure whereby the dynamial equations desribing the time evolutionof our birth and death model (the forward or bakward Chapman-Kolmogorov equations(Karlin and Taylor, 1975)) onverge to quasispeies-like di�erential equations whih bifurateas in the simpli�ed model presented in (Boerlijst et al., 1996).We also note that, in priniple at least, our model allows us to alulate approximationsfor the error threshold in a �nite population where reombination is present, along the linesof (Nowak and Shuster, 1989). In that paper the optima of the stationary distribution areapproximated by treating the frequeny of optimal genotypes i=N as a ontinuous variable x.The positions of the optima are then revealed as the solutions of a quadrati equation for x,the disriminant of whih (a quadrati in the quantity Q) yields the mutation rate at whihthe optima oalese and the distribution beomes unimodal; i.e. the error threshold. In ourase reombination introdues a ubi term to the equations, making (analytial) solutionmore diÆult. We hope to arry out a mathematial analysis in a future paper.9
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