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Neural complexity: A graph theoretic interpretation
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One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to
coherently integrate information across distinct functional modules in the absence of a central executive. To
this end, Tononi et al. [Proc. Natl. Acad. Sci. USA. 91, 5033 (1994)] proposed a measure of neural complexity
that purports to capture this property based on mutual information between complementary subsets of a system.
Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the
balance between the segregation and integration of a system’s dynamics. One key question arising for such
measures involves understanding how they are influenced by network topology. Sporns et al. [Cereb. Cortex
10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the
topological features of a network. However, a complete picture has yet to be established. While De Lucia et al.
[Phys. Rev. E 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work
utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In
this paper we start by describing weighted connection matrices formed by applying a random continuous weight
distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in
terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish
a dependency of neural complexity on cyclic graph motifs.

DOI: 10.1103/PhysRevE.83.041906 PACS number(s): 87.18.Sn, 87.19.lo, 87.19.lj, 89.75.Fb

I. INTRODUCTION

Graph theory has been employed with some success
within neuroscience [1]. However, graph theory explicitly
concerns itself with characterizing network structure and,
at best, can deliver only circumstantial insight into network
dynamics. As a partial answer to this, over the past decade
neuroscientists have developed a suite of dynamical measures
that employ information theory [2–4]. While information
theoretic measures come with their own limiting assumptions
(e.g., they typically demand that the dynamics on a network
be stationary), their ability to deal naturally with weighted
connectivity matrices has made them extremely appealing.
However, in general, the analytical understanding of such
measures is less well developed than the tools of graph theory.
Consequently, it is likely that a more comprehensive picture of
network function could be achieved by an understanding of the
relationship between information theoretic and graph theoretic
measures [5]. In this paper we pursue one such analysis.

Neural complexity, as formulated by Tononi, Sporns, and
Edeleman (TSE) [2], is perhaps one of the most widely
discussed information theoretic measures. It purports to
capture the nervous system’s ability to coherently integrate
information at the level of the organism while maintaining the
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functional segregation associated with specialization across a
range of anatomical scales [6].

The TSE measure calculates the mutual information shared
between processes occurring on complementary subsystems
of a neural network in order to identify networks that simulta-
neously support relatively segregated local behavior and rela-
tively integrated global dynamics. Tononi et al. were able to
demonstrate that network structures inspired by the properties
of the cerebral cortex scored highly [2,7]. Subsequently, the
measure has been used extensively, e.g., to characterize the
dynamics of different regions in the mammalian brain [8], to
analyze evolved robot controllers [9], and to explore theories
of sleep, consciousness, and schizophrenia [10].

The relationship between neural complexity and graph
topology has been central to the intuitions that underlie
the neural complexity measure. Originally, Sporns et al. [8]
found that constructing the graph topology of networks using
organizational principles derived from observations of the
cerebral cortex led to high neural complexity. Sporns et al. [7]
used graph theoretic tools to analyze the topology of networks
that were optimized for high complexity using an evolutionary
algorithm. De Lucia et al. [11] were the first to attempt to
decompose neural complexity in terms of elementary graph
motifs. They achieved this by utilizing a popular analytic
model that proceeds on the assumption that neural dynamics
may be approximated by a stationary multivariate stochastic
process and, furthermore, that this process is Gaussian. This
enables the interactions between network components (and
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mutual information itself) to be expressed via a covariance
matrix. Recently, we have highlighted and then amended an
error in this analytical model by moving to a continuous time
analog of the original apparently discrete time formulation
[12]. Consequently, it is necessary to revisit the analytical
work of De Lucia et al. in light of this correction. Furthermore,
we argue that the formulation of neural complexity employed
by De Lucia et al. did not implement correctly the original
definition of neural complexity [12].

We start by deriving an approximation for neural com-
plexity in terms of elementary graph motifs. We find that, to
a first approximation, complexity is dependent on reciprocal
connections and, to a second approximation, on two types of
three-cycle. We go on to suggest that higher-order terms in our
approximation for neural complexity will be dependent, with
diminishing impact, on cycles of increasing order.

We illustrate the validity of our approximation by example
of a ring lattice connectivity scheme where the probability
of connection between elements decays with the distance
between them. This scheme may be considered a discretized
version of the model discussed in detail in [12], which was
inspired by a Toeplitz covariance matrix model suggested
in [2]. The ring lattice model ratifies our application of the
neural complexity approximation to topological graphs and
also reveals conditions for the presence of a peak in complexity
at intermediate connectivity decay values.

II. NEURAL COMPLEXITY

The scenario we address here is the same as in [12] (see
also [2,7,13,14]): we have a system of n “neural components”
(nodes for brevity) and a stationary multivariate stochastic
process X(t) ≡ {Xi(t)| i = 1, . . . , n} running on the system,
where Xi(t) represents the activation state at time t of the
ith node. In [2] the authors introduced a neural complexity
measure based on mutual information between subsystems of
the given system. The idea behind the measure is that complex
neural systems should be expected to exhibit a balance between
“integration” and “segregation” of neural subsystems. The
measure is defined as follows: first, the integration associated
with the system is introduced as

I ≡
n∑

i=1

Hi − H , (1)

where H denotes the entropy H (X(t)) of the full process
X(t) and Hi denotes the entropy H (Xi(t)) of the individual
activation Xi(t). Note that by stationarity these quantities and
hence I itself do not depend on time t . I may be interpreted as
a measure of the deviation from independence of the individual
components of the system. Neural complexity is then defined
to be

CN ≡
n−1∑
k=1

(
k

n
I − 〈I〉k

)
, (2)

where 〈·〉k denotes an average over all subsystems of size k

of the given system. Neural complexity is thus an average
over all scales (represented by subsystem size k) of the
difference between mean integration 〈I〉k at the given scale
and the appropriately scaled global integration k

n
I. For a highly

segregated system both of these quantities will be small, and
CN itself will thus be small. Conversely, for a highly integrated
system the integration for individual subsystems will be close
to the scaled global integration, and CN will again be small.
CN can thus be expected to attain peak values for systems that
are neither highly integrated nor highly segregated; see [2] for
a fuller discussion of interpretation of the measure. CN may
also be expressed directly in terms of entropies as

CN =
n−1∑
k=1

(
〈H 〉k − k

n
H

)
. (3)

A. Actualization of the measure

In the special case where the X(t) are jointly multivariate
Gaussian, the entropy H may be expressed simply in terms of
the n × n covariance matrix � ≡ X(t)τ X(t), where the overbar
represents an average over the statistical ensemble [15]. By
stationarity, � does not depend on time t . We then have H =
1
2 ln([2πe]n|�|), so that

CN = 1

2

n−1∑
k=1

(
〈ln |�|〉k − k

n
ln |�|

)
. (4)

Tononi et al. [2] consider an n × n connectivity matrix C,
where Cij is to be interpreted as the weight on the connection
from node i (efferent) to node j (afferent), and a linear
autoregressive neural process

X(t) = X(t) · C + ε(t) (5)

driven by serially uncorrelated Gaussian noise ε(t). However,
there is an error in their calculation of the covariance matrix
associated with process (5) [12]. While the error is readily
corrected, in [12] it is argued that such a discrete time process
is likely to be unacceptably unrealistic and leads, furthermore,
to conclusions that probably do not support the intuitions of the
originators of the CN measure [2]. Thus, in [12] the discrete
time model (5) is dropped in favor of the continuous time
multivariate Ornstein-Uhlenbeck process [16,17]

dX(t) = −X(t) · (I − C) dt + dW(t) , (6)

where W(t) is a multivariate Wiener process with an identity
covariance matrix, representing white noise applied indepen-
dently to each node.1 In [12] it is shown that neural complexity
for this process has distinctly different characteristics from that
for the discrete time process (5) (see [12] for more discussion
on this topic).

Equation (6) may be viewed as a linearized, noisy, con-
tinuous time recurrent neural network (CTRNN) [18]. The
condition for existence of a stationary process (6) is

max{Re(λ)| λ ∈ Eig(C)} < 1 , (7)

1Note that the noise input to different nodes is uncorrelated. If
we allow noise levels to differ per node, then we may recover an
equivalent equation to (6) by a simple linear transformation of the
connectivity matrix and a rescaling of activation levels.
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where Eig(C) denotes the set of eigenvalues of C. The
stationary process (6) is multivariate Gaussian so that (4)
applies, with covariance matrix � satisfying the continuous
time Lyapunov equation

2� = I + Cτ� + �C , (8)

(see [12] for a derivation). If the stationarity condition (7)
holds, (8) will have a unique solution for � [19]. There exist,
furthermore, efficient algorithms for numerical solution of (8)
[20].

B. The neural complexity approximation

We start by choosing the connectivity scale parameter ε ≡
‖C‖ for some submultiplicative matrix norm ‖·‖ [21]. Let us
now define recursively

2�(r+1) = I + Cτ�(r) + �(r)C (9)

for r = 0,1,2, . . ., with 2�(0) = I . Setting

�(m) ≡ 2−m

m∑
k=0

(
m

k

)
(Ck)

τ
Cm−k (10)

for m = 0,1,2, . . ., we have �(m) = O(εm), and using the
binomial identity

(
m+1

k

) = (
m

k−1

) + (
m

k

)
, the identities

2�(m+1) = Cτ�(m) + �(m)C (11)

may be verified for m = 0,1,2, . . .. From (11), noting that
�(0) = I , it is then straightforward to show that

2�(r) =
r∑

m=0

�(m) (12)

satisfies the recursion relation (9), with 2�(0) = I . Now we
set �(r) = � − �(r), where � is the (unique) solution of (8).
From (8) and (9) we have

2�(r+1) = Cτ�(r) + �(r)C (13)

from which it follows, using the triangle inequality and
submultiplicative property of the matrix norm, that ‖�(r+1)‖ �
ε‖�(r)‖, leading to ‖�(r)‖ � εr‖�(0)‖. Similarly, from (8) we
may check that ‖�(0)‖ � ε‖�‖, so that � = �(r) + O(εr+1),
and from (12) we have, finally, the series expansion

2� =
r∑

m=0

�(m) + O(εr+1)

= I+ 1
2 (Cτ+C) + 1

4 [(C2)
τ+2CτC+C2]+ · · · , (14)

which converges provided ε < 1 (see discussion on normal-
ization below).

In [12] the expansion (14) is the basis for derivation of the
approximation

CN = C∗
N + C∗∗

N + O(ε4) , (15)

where

C∗
N ≡ n + 1

48

∑
i �=j

(
C

2
ij + CijCji

)
(16)

is O(ε2) and

C∗∗
N ≡ n + 1

96

∑
i �=j �=k

(3CijCjkCik + CijCjkCki)

+ n + 1

24

∑
i �=j

Cii

(
C

2
ij + CijCji

)
(17)

is O(ε3).
In [12] it is recommended that, in order to establish a level

playing field when comparing complexity between networks,
some form of normalization be applied to the connection
matrix C, in particular, spectral normalization, where C is
premultiplied by w/ρ(C), with

ρ(C) ≡ max{|λ|| λ ∈ Eig(C)} (18)

the spectral radius of C and 0 < w < 1 a scale parameter.
Since spectral radius is the infimum of all (induced) matrix
norms [21] it is a good indicator of the accuracy of the neural
complexity approximation (15); i.e., the approximation can
be expected to be accurate for small w. This is borne out
empirically [12].

III. RELATING NETWORK CONNECTIVITY TO
GRAPH STRUCTURE

The motivation for this paper is to investigate how neural
complexity CN relates to the graph structure of a putative
network underlying a neural system. Toward this end, we re-
quire some plausible scheme by which to relate a connectivity
matrix C to a given adjacency matrix A ≡ (Aij ) representing
the topology of the underlying network.

De Lucia et al. [11] introduce a simplified scheme where
the connection matrix C is just the adjacency matrix, which
they take to be symmetric and with no self-connections,
normalized by system size. They then proceed to derive
an approximation to neural complexity CN for a stationary
multivariate Gaussian process on such a network. However,
besides taking as their starting point the discrete time process
(5),2 which, as mentioned previously, we consider unsuited
to neural complexity analysis, we believe their analysis to be
flawed in the following respect: in averaging over k subsystems
as required by (3), the authors of [11] appear effectively to treat
subsystems in isolation, i.e., as neural processes in their own
right, uncoupled from the full system,3 which surely defeats
the purpose of CN as defined by (2). This has the result of
introducing spurious second-order terms. [The correct result
for the discrete system time system is of fourth order in
connectivity; see [12], Eq. (40).]

In this study we consider only directed graphs. Our
approach, however, extends straightforwardly to undirected

2We remark that the previously mentioned covariance calculation
error of [2] (see Sec. II) is not repeated in [11]; covariance matrices
are (implicitly) calculated correctly according to their Eq. (3).

3See, e.g., the derivation of Eq. (14) in [11], where the quantity
D2(k) seems to denote the quantity D2 previously introduced for the
full system of n nodes, but interpreted for an independent system of
k nodes.
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m2,1 m2,2 m2,3 m2,4

FIG. 1. Two-edge motifs. Only shaded motifs are implicated in the neural complexity measure.

(bidirectional) graphs. Graph topology is specified by a binary
adjacency matrix Aij , so that Aij = 1 represents a directed
connection from node i (efferent) to node j (afferent). In regard
to diagonal elements, we take the view here that, while our
graphs will not have self-connections so that Aii = 0 for all i,
diagonal elements of the connection matrix are to be regarded
as representing variation in the characteristic relaxation time,
or activation decay, of the individual neural components.
See [12] for more discussion on this point. In the spirit of
statistical physics, we now suppose that, given an adjacency
matrix A, weights are assigned independently and identically
at random to each connection. We suppose that diagonal
activation decay elements are drawn, also identically and
independently, from a separate distribution with zero mean, so
that

Cij =
⎧⎨
⎩

WijAij i �= j

Di i = j,

(19)

where the Wij are independent and identically distributed
(iid) as some random variable W and the Di are iid as some
random variable D that has mean zero. We may then, given
a graph structure A, consider neural complexity CN , via the
randomness 4 introduced by W,D, as a random variable
CN(A; W,D), and we define the complexity measure for a
graph A to be the expectation over W,D:

CN (A) ≡ E[CN (A; W,D)] . (20)

We define similarly the approximations C∗
N (A), C∗∗

N (A). Note
that these measures depend on the particular distributions
W,D used in the construction of the random connectivity
matrix. In regard to normalization, in the case where graphs
of similar mean degree are compared, one might take the
view that normalization is less critical since, in some sense,
the overall connectivity strength averaged over all network
weights W,D will not vary drastically (but see the example
in Sec. IV).

Without normalization, and assuming that we may safely
ignore instances of C for which the stationarity condition (7)
fails, we may calculate from (16) and (17) that

C∗
N (A) = n + 1

48
(μ2m1 + 2μ2m2,2), (21)

4But note that the variances of W and D may be zero in the
degenerate case of there being no randomness.

C∗∗
N (A) = n + 1

32
μ3(m3,3 + m3,8) , (22)

where μ ≡ E(W ) and μ2 ≡ E(W 2) are the mean and second
moment of the weight distribution, respectively, and

m1 ≡
∑
i,j

Aij , (23)

m2,2 ≡ 1

2

∑
i,j

AijAji, (24)

m3,3 ≡
∑
i,j,k

AijAjkAik, (25)

m3,8 ≡ 1

3

∑
i,j,k

AijAjkAki . (26)

The mp,q may be interpreted as the multiplicities of certain
graph motifs, small repeated subgraph fragments [22] in the
graph represented by A. Specifically, m1 is just the total
number of edges of the graph, m2,2 counts the number of
reciprocal connections, and m3,3 and m3,8 count the numbers
of two varieties of three-cycle; see Figs. 1 and 2. Note that,
since activation decay D has zero mean, neither C∗

N (A) nor
C∗∗

N (A) depends on D; there may potentially, however, be
dependencies on higher-order moments of D for higher-order
approximations.

Equations (21) and (22) tell us the following: the ex-
pected neural complexity of a neural system based on a
graph according to the prescription (19) depends, to a first
approximation, on the total number of connections and the
number of reciprocal connections in the graph. To the next
order of approximation it depends on the number of two
varieties of three-cycle. The procedure via which C∗

N and C∗∗
N

were derived (see [12]) suggests that if we were to calculate
higher-order approximations according to the expansion (14)
for the covariance matrix, then higher-order cyclic graph
motifs would successively come into effect with diminishing
impact, to a degree depending roughly on the spectral radius
of A and the moments of W (and possibly of D).

We may well wish to assess neural complexity for statistical
ensembles of graph structure; that is, the adjacency matrix
elements Aij represent (jointly distributed) random variables.
In this case, CN (A) and its approximations as well as the
motif counts m1,m2,2,m3,3,m3,8 may themselves be considered
as random variables, and their ensemble means (and higher
moments) may be calculated. In the following, we shall use
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m3,1 m3,2 m3,3 m3,4

m3,5 m3,6 m3,7 m3,8

m3,9 m3,10 m3,11 m3,12

FIG. 2. Three-edge motifs. Only shaded motifs are implicated in the neural complexity measure.

the notation 〈·〉 to denote an average over a statistical ensemble
of graphs, as distinct from the mean E (·) over the network
weight random variables W,D.

IV. EXAMPLE

To illustrate the integration-segregation balance that moti-
vates their formulation of the measure CN , Tononi et al. [2]
demonstrate a complexity peak for an ad hoc Toeplitz covari-
ance matrix where covariance decays as we move away from
the diagonal. In [12] this idea is analyzed in more detail via our
approximation formula. In that paper a connection matrix is
constructed based on a ring lattice, where connectivity (and
consequently covariance) decays exponentially with lattice
distance (see also [23]). The resultant covariance matrix is
a Toeplitz matrix analogous to that in [2]. Here we introduce a
model that parallels the ring lattice construction in [12]. Rather
than, as in that model, having connection strength decay with
lattice distance, we instead construct an ensemble of random
graphs where the probability of connection decays with lattice
distance. This model is thus amenable to a graph theoretic
analysis as expounded above.

We proceed by constructing a directed random graph with
no self-connections on a ring lattice of n nodes, where each
edge is assigned independently with probability

P (Aij = 1) = Pij ≡ cad(i,j ) (27)

for i �= j , where d(i,j ) ≡ min(|i − j |,n − |i − j |) is ring
lattice distance, 0 < a < 1 is a connectivity decay parameter,5

and c is a constant to be determined. We shall generally work to
the large network limit n → ∞. We may calculate that in this
limit the mean (in or out) degree is given by κ = 2cr/(1 − a).
We shall take n, κ , and a as the defining parameters of the
model, so we set

c ≡ 1
2κ(1/a − 1) (28)

in (27). Note that Pij � 1 for all i �= j requires

a > a0 ≡ min(1 − 2/κ,0) . (29)

The probability that two arbitrarily chosen distinct nodes
are connected is given by p ≡ κ/n; it corresponds to the
connection probability for an Erdös-Rényi random graph [25]
of the same size. In the large network limit, the degree
distribution of our model tends to a Poisson distribution, as for
an Erdös-Rényi random graph [25]. Note that while the mean
degree of individual graphs instantiated from the ensemble
may vary, its ensemble average is always κ .

5The connectivity decay parameter a is somewhat akin to the
“rewiring” parameter in small-world models [24], to which our model
bears some resemblance.
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We first calculate the mean approximate neural complexity
without normalization; to this end, the chief advantage of
our model lies in the mutual independence of the Aij , which
allows us to calculate easily the means of the quantities
m1,m2,2,m3,3,m3,8 over the ensemble. In the large network
limit we find

〈m1〉 = nκ, (30)

〈m2,2〉 = 1

4
nκ2 1 − a

1 + a
, (31)

〈m3,3〉 = 3〈m3,8〉 = 3

4
nκ3 a(1 − a)

(1 + a)2
, (32)

valid for a0 < a < 1. Recall that in (21) and (22) C∗
N (A) and

C∗∗
N (A) have already been averaged over the weight distribution

W applied to a given graph specified by A. For fixed n,κ,a we
may now, using (30)–(32) average again over the ensemble
of random graphs A(n,κ,a) to derive the mean neural
complexity approximations 〈C∗

N (n,κ,a)〉 and 〈C∗∗
N (n,κ,a)〉. We

find

〈C∗
N (n,κ,a)〉 = n(n + 1)

48

(
κμ2 + 1

2
κ2μ2 1 − a

1 + a

)
, (33)

〈C∗∗
N (n,κ,a)〉 = n(n + 1)

32
κ3μ3 a(1 − a)

(1 + a)2
. (34)

For fixed n,κ the first term in 〈C∗
N (n,κ,a)〉 is constant, while

the second term is monotone decreasing with a. 〈C∗∗
N (n,κ,a)〉

has a maximum at a = 1
3 ; rewiring initially boosts and then

degrades the number of three-cycles. To examine the behavior
of the non-normalized approximation in more detail, we may
calculate that, as a function of a, 〈C∗

N (n,κ,a)〉 + 〈C∗∗
N (n,κ,a)〉

has an extreme value at

a∗ = 3κμ − 2

9κμ + 2
, (35)

although the extremal only represents a maximum (i.e., a
complexity peak) if μ < 0, which implies a predominance
of inhibitory connections. We note that, while this condition
may exclude the mammalian cortex, where the majority of
connections are thought to be excitatory, it may be relevant to
early sensory relays, which are dominated by inhibition, e.g.,
the olfactory bulb or the first stages of the visual system [26].
In any case, there exists the possibility of a complexity
peak for negative μ; then, the condition a0 < a∗ < 1
implies

1 < κ � 3, mu < − 2

3κ
, (36a)

or

κ > 3, − 2

3κ

(
κ − 1

κ − 3

)
� μ < − 2

3κ
. (36b)

[Bearing in mind that, if μ is too large and negative, then
the stability condition (7) is likely to be violated.] Outside
of this regime 〈C∗

N (n,κ,a) + C∗∗
N (n,κ,a)〉 is always monotone

decreasing with a: the complexity contribution of reciprocal
connections overwhelms, on average, the contribution of
three-cycles, and there is no complexity peak at intermediate
connectivity decay. We remark that for a corresponding
undirected graph model every link is effectively reciprocal
and there is then a possibility of a complexity peak, albeit

for sparsely connected networks, specifically for mean degree
κ < 3.

We now examine neural complexity under spectral nor-
malization. Since this case appears intractable to analysis,
we carried out simulations as follows: for a series of mean
degree values κ ranging from 2.5 to 5.5 and for a sequence
of decay parameters a in the range (a0,1), we generated
105 random directed graphs of n = 30 nodes, according to
the prescription of (27). For each graph A, connectivity
coefficients C were generated according to (19). There was
no decay variance; i.e., the diagonal weights Di were set
to zero. Internode weights Wij were drawn from a binormal
distribution including both positive (excitatory) and a smaller
fraction of negative (inhibitory) weights; specifically, each
weight was drawn independently with 80% probability from
N (0.5,0.01) and with 20% probability from N (−0.4,0.01).
Spectral normalization was then applied to each resulting
connectivity matrix with scale parameter w = 0.2. (We ver-
ified that at this normalization level C∗

N + C∗∗
N was generally

a close approximation to the exact value CN .) Finally,
the means 〈C∗

N (n,κ,a)〉 and 〈C∗∗
N (n,κ,a)〉 were calculated in

sample. (Given the large sample size, standard errors for
the estimated mean were small, although the variance was
substantial.)

Results are illustrated in Fig. 3. We see that within the
illustrated mean degree range there is a connectivity peak
that disappears at approximately κ > 5. Thus, as long as
connectivity is not too dense, we can expect a connectivity
peak at intermediate connectivity decay comparable to that
seen in the continuous exponential connectivity decay model
of [12] under spectral normalization. As in that study,
normalization was (at least for positive mean connection
strength μ) a prerequisite for the appearance of a connectivity
peak, although in the current model no self-activation was
necessary.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2  0.4  0.6  0.8  1

ne
ur

al
 c

om
pl

ex
it

y

a

κ  =  2.5

κ  =  3.0

κ  =  3.5

κ  =  4.0

κ  =  4.5

κ  =  5.0

κ  =  5.5

FIG. 3. Mean approximate neural complexity 〈C∗
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N (n,κ,a)〉 under spectral normalization, plotted against connec-
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decay a0 = 1 − 2/κ . See text for details.
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For a thorough analysis of the accuracy of the approxima-
tion (15) in regard to the normalized example, equivalently,
the contribution of higher-order motifs, we refer the reader
to [12] (their Sec. III and especially Sec. VIII, Figs. 5 and 6).
The exponential connectivity decay model in that paper, while
not equivalent to the current example (see discussion below),
has comparable parameters, scaling, and neural complexity
values.6 Results and analysis there reveal that for a scale pa-
rameter w = 0.2 the approximation is very accurate, implying
a rather small contribution from higher-order motifs, which by
(15) will be of order O(w4).

V. DISCUSSION

The central claim of this study is that neural complexity
is driven by the presence of specific topological features of
a network, namely, cyclic motifs, with lower-order cycles
exerting the greatest influence. While here we carry the
topological analysis up to third order in connectivity, our
analytical approach points to the emergence of higher-order
cycles with diminishing influence on neural complexity [12].

The original measure, defined for an arbitrary (stationary)
stochastic process, is commonly characterized in terms of a
multivariate process running on a weighted network. Conse-
quently, in addition to specifying a network topology, one must
specify weights over the network’s edges before the measure
can be applied. Here we chose a statistical mechanics approach
where the weights on a graph are drawn from a random
distribution. This allows us to consider the neural complexity
associated with a particular topology by determining the mean
over the ensemble of weighted networks with which it is
associated.

It is instructive to contrast the behavior of the neural
complexity measure for the ring lattice model with exponen-
tial connectivity decay described in [12], where connection
strength decayed with lattice distance, and the behavior of the
same measure for the model explored here in which connection
probability decays with lattice distance. The original model
demonstrated that without normalization neural complexity
decreases monotonically with the decay parameter, whereas
with normalization there may be an intermediate complexity
peak provided that there is some variance in the time constants
of individual nodes. In the current model, the influence of the
decay parameter on neural complexity is seen explicitly to
derive from its impact on the relative prevalence of reciprocal
connections and three-cycles. While the impact of reciprocal
connections simply decreases monotonically with the decay
parameter, that of three-cycles peaks at an intermediate value.
How this balance plays out is determined by a network’s mean
degree and mean connection strength.

6We remark that for the 30-node networks in the current ex-
ample, the full (nonapproximated) neural complexity measure (4)
is computationally exorbitant on a conventional computing plat-
form due to the combinatorial explosion with increasing network
size entailed in iterating through all possible subnetworks at all
scales.

In general, for there to be an intermediate peak in complex-
ity, mean degree must be low in order to prevent reciprocal
connections from dominating. In addition, for directed graphs,
the mean connection strength must be negative, implying a
predominance of inhibitory connections. We have already
mentioned that this constraint may only be met by some
kinds of neural systems [26]. For undirected graphs we note
that the number of reciprocal connections is, by definition,
constant, but low mean degree is still required in order to see
an intermediate peak in complexity. In contrast to our previous
lattice model with decaying connection strength [12], here it
was not necessary to introduce variability in network node
time constants.

We have seen that connectivity normalization can
have a significant impact on the behavior of the neural
complexity measure. Spectral normalization, for instance,
changes the regime within which an intermediate complexity
peak may appear, specifically accommodating higher mean
degree.

In summary, while the founding intuition that complexity
derives from a balance between integration and segregation
might lead one to expect that an intermediate complexity peak
should be a robust property of any model in which a “segre-
gated” lattice-like graph is relaxed toward a more “integrated”
random graph, we find that the picture is more subtle and that
relative frequencies of specific cyclic topological features play
a crucial role.

For future work it would, in particular, be illuminating to ex-
tend our example beyond the ring lattice model presented here
to square or higher-dimensional lattice topologies. Although
we should expect our principal result, the dependence of neural
complexity on cyclic motifs, to prevail, we would expect
relative frequencies of cyclic motifs to behave differently under
variation of the connectivity decay parameter, both with and
without connectivity normalization; this relates in particular to
the larger number of nodes neighboring a given node in higher
dimensions. We remark that analytic calculation of the mean
motif multiplicities (30)–(32) for higher-dimensional lattices
is challenging.

Finally, we note that neural complexity may be considered
as just one of a family of information theoretic metrics based on
the intuition of segregation-integration balance; we expect that
the methods employed in this paper can be readily extended
to related measures. Particularly promising are measures such
as causal density [4,27,28] that, in contrast to the “static”
mutual information underlying CN , take into account directed
information flow between network subsystems, expressible
in terms of transfer entropy [29,30]. In future studies we
intend to extend the analytic techniques presented here to such
measures.
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