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To gain a deeper understanding of the impact of spatial embedding on the dynamics of complex systems, we
use a measure of interaction complexity developed within neuroscience using the tools of statistical information
theory. We apply this measure to a set of simple network models embedded within Euclidean spaces of varying
dimensionality to characterize the way in which the constraints imposed by low-dimensional spatial embedding
contribute to the dynamics (rather than the structure) of complex systems. We demonstrate that strong spatial
constraints encourage high intrinsic complexity and discuss the implications for complex systems in general.
© 2010 Wiley Periodicals, Inc. Complexity 16: 29–34, 2010
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1. INTRODUCTION

F rom its outset, complexity science has concentrated on
how simple properties can give rise to complex orga-
nization and behavior. The interplay between, inter

alia, nonlinear, local interactions, physical constraints, noise,
and processes of copying or competitive exclusion has
been shown to give rise to self-organization, autocatalysis,
path dependence, and emergent behavior in many differ-
ent ways [1,2]. Most real-world complex systems are spatially
extended systems. For example, nervous systems, ecologies,
economies, cities, etc., all exhibit multiple scales of spatial
organization. The impact that this spatial embedding has on
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the behavior of these systems is not well understood. In par-
ticular, the role of spatial constraints in influencing the ability
of these systems to exhibit organized behavior is an open
question.

It is clear that projecting a system of interacting elements
into a low-dimensional space such that interactions tend to
occur only between elements that are near to one another
must restrict the possible ways in which the system elements
can be“connected.”This restriction might be viewed as a frus-
trating constraint that prevents, or at least mitigates against,
useful kinds of organization that rely upon “long-range” con-
nections. However, embedding a system’s interactions within
a space also imposes potentially useful local correlations
and symmetries on its organization “for free.” In fact, stud-
ies show that spatial embedding of this kind can predispose
systems to exhibit behavior that would otherwise be unsta-
ble [3, 4]. Might the constraints imposed by low-dimensional
spatial embeddings actually be critical to enabling complex
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systems to arise and persist? This notion casts spatial con-
straints as potentially “enabling” rather than frustrating, in
that they might naturally steer or bias a system’s organization
in a potentially useful fashion [5].

Here, we are interested in the relationship between spatial
constraints, network topology, and interaction complexity,
an information–theoretic measure developed to characterize
the way in which both vertebrate and invertebrate nervous
organization might influence nervous function [6]. Before
we introduce this measure, we first briefly describe some
examples of the way in which space can influence network
dynamics. By applying an approximation of the interaction
complexity measure to a simple spatially embedded network
and varying the dimensionality of the space, we charac-
terize and explain the relationship between the structural
properties conferred by spatial embedding and any atten-
dant influence on interaction complexity. We conclude with a
discussion of the implications for complex systems in general.

2. NETWORKS IN SPACE
The recent explosion of interest in the “new science of net-
works” [7–9] has focused attention on the application of
graph–theoretic approaches to the characterization of nat-
ural and engineered systems. Although the influence of space
was at least implicit in certain of the first graph structures
discussed and used in this literature, its contribution has
only started to be systematically explored relatively recently
[10, 11].

For instance, Stanley Milgram’s now infamous demonstra-
tion of the “six degrees of separation” that apparently link
members of society to each other through mutual acquain-
tance relies upon space [12]. The instruction to each of Mil-
gram’s experimental subject was to deliver a package to a
person identified only by name and place of residence. Sub-
jects were thus clearly required to combine their social and
geographical knowledge to meet this challenge. The role of
spatial knowledge and the spatial structure of social networks
is not often recognized in discussion of the surprisingly short
routes that the successfully delivered packages took.

Here, we wish to explicitly explore the relationship
between spatial embedding and the properties that it confers
on both the network topology of complex systems and their
consequent behavior. Several modeling studies suggest that
this relationship may be significant. We describe two below.

Boerlijst and Hogeweg [3] demonstrate the power of spa-
tial embedding in their model of molecular self-organization
in “hypercycles” [13]. A hypercycle comprises a set of mol-
ecular species, where each species supports the persistence
of some of the others and, in total, they achieve the persis-
tence of the entire set. Although such organizations appear
to offer a route by which persistent cooperative collaboration
might arise spontaneously, such organizations can be par-
asitized by free-riding molecular species that benefit from

interacting with some member(s) of the hypercycle, but do
not support the hypercycle’s persistence in return. In Boerli-
jst and Hogeweg’s model, parasitization of this kind destroyed
hypercycles when the population was well mixed (i.e., non-
spatial). When the same system of molecular species was
embedded within a lattice such that individual molecules
could only interact with their close spatial neighbors, the
hypercycles that arose were spatially organized as rotating
spirals and were also able to resist parasites.

Di Paolo [4] shows the importance of spatial embedding
for complex organization in a somewhat different context.
He shows that an altruistic behavior is unstable in a well-
mixed nonspatial model: exploitation quickly undermines
any tendency toward cooperation. However, the same altruis-
tic behavior is prevalent in the same model when individuals
are distributed across a two-dimensional continuous plane.
When their interactions are spatially constrained, individuals
spontaneously organize into clusters of altruistic individuals,
each surrounded by an annulus of non-altruists.

In both of these studies, systems were able to achieve
a sophisticated mode of functional organization only when
they were embedded within a low-dimensional space. No
such organization could persist when the system’s compo-
nents were entirely well mixed and its interactions were,
as a consequence, unconstrained. What of systems that lie
between these two extremes? The notion of exploring sys-
tems that lie between order (e.g., a lattice) and disorder (e.g.,
a random graph) is familiar within complexity science since
complexity measures typically seek to capture the nature of
systems that are neither completely random nor completely
regular. A familiar rhetorical device is taken from the statis-
tical mechanics of gases and crystals. Although the low-level
organization of a gas can be idealized as random and that of
a crystal can be idealized as regular, the aggregate behavior
of each is readily derivable. For intermediate systems at the
phase transition between solid and fluid, however, this rela-
tionship is less clear. Complexity, it is claimed, exists in this
middle ground between order and disorder [2].

Here, we explore the behavior of systems that lie between
the two extremes reported by Di Paolo and Boerlijst and
Hogeweg by relaxing the constraints imposed by spatial
embedding through increasing the dimensionality of the
metric space within which the network nodes are located.
As the dimensionality increases (while the density of con-
nections is held constant) the spatially imposed correla-
tions amongst the system’s interactions diminish, until,
in the limit of an infinite dimensional space, a random,
uncorrelated graph is achieved, equivalent to a well-mixed
system.

Because we are interested in the complexity of the inter-
actions between the elements described by such a net-
work, rather than the structure of the network itself, we
use a measure of interaction complexity developed within
neuroscience and described in the following section.
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3. INTERACTION COMPLEXITY
Central to cognitive processing within the nervous system is
the ability of the brain to integrate distributed information to
produce coherent cognitive behavior. For example, informa-
tion from audio, visual, and olfactory input must be success-
fully integrated and used to inform subsequent motor output
[6]. In contrast, a great deal of experimental work demon-
strates that separate neural regions are specialized and hence
quasi-independent. For instance, in the mammalian brain,
different neural areas are functionally specialized for detec-
tion of visual attributes such as shape, motion, and color.1

Neural systems must balance this functional segregation at
the level of neural modules with the requirement for func-
tional integration at the level of the organism. Tononi et al.
[6] proposed an interaction complexity measure that captures
this tension within a single metric.

In this article, we will refer to this measure as TSE com-
plexity. We describe it as a measure of interaction complexity
because it is principally concerned with capturing the nature
of the interactions amongst parts of a system rather than
the static structure of the system, per se. Despite being con-
ceived within a specific neuroscience context,TSE complexity
has received widespread attention across the behavioral and
brain sciences, from fields as diverse as autonomous robotics
[17], neural imaging [18, 19], local dynamics of the mam-
malian brain [20], and the exploration of theories of sleep,
consciousness, and schizophrenia [21].

TSE complexity is derived (see Refs. 6, 22, 23, and 24) by
considering an isolated set of n “neural components” (nodes
for brevity) and a stationary multivariate stochastic process
X(t) ≡ {Xi(t)| i = 1, . . . , n} running on the system, where
Xi(t) is to represent the activation state at time t of the ith
node. First, the integration associated with the system is
introduced:

I ≡
n∑

i=1

Hi − H , (1)

where H denotes the entropy H(X(t)) of the full process X(t)
and Hi the entropy H(Xi(t)) of the individual activation Xi(t).
Note that by stationarity these quantities and hence I itself
do not depend on time t . I may be interpreted as a mea-
sure of the deviation from independence of the individual
components of the system. TSE complexity is then defined
to be:

1It is interesting to note that neuroscientists have been con-
vinced that spatial organization of this kind is implicated in
the complexity of neural behavior since the first staining tech-
nologies began to reveal the structure of animal brains [14, 15]
and that spatial constraints have recently been invoked to
account for the circuit complexity of cortical structures [16].

C ≡
n−1∑
k=1

(
k
n

I − 〈I〉k

)
(2)

=
n−1∑
k=1

(
〈H 〉k − k

n
H

)
, (3)

where 〈·〉k denotes an average over all subsystems of size k.
In the special case where the X(t) are multivariate Gaussian,
the entropy H may be expressed simply in terms of the n × n
covariance matrix � ≡ X(t)ᵀX(t), where the overbar repre-
sents an average over the statistical ensemble [25]. Again,
by stationarity � does not depend on time t . We then have
H = 1

2 ln([2πe]n|�|) so that:

C = 1
2

n−1∑
k=1

(
〈ln |�|〉k − k

n
ln |�|

)
. (4)

Like other notions of complexity, this measure is low when
either all elements are independent and hence completely
segregated or the system is completely integrated. Complex-
ity is maximal in a system that is globally integrated at the
level of large subsystems but simultaneously exhibits a high
degree of segregation between smaller subsystems.

Tononi et al. [6] considered an n × n connectivity matrix,
C , where Cij is to be interpreted as the weight on the con-
nection from (efferent) node i to (afferent) node j, and a
linear regressive neural process X(t) driven by uncorrelated
Gaussian noise. However, there is an error in their calcula-
tion of the covariance matrix. In Ref. 26, this error is cor-
rected via introduction of the continuous-time multivariate
Ornstein-Uhlenbeck process [27]:

dX(t) = −X(t) · (I − C) dt + dW(t), (5)

where I is the identity matrix and W(t) a multivariate Wiener
process with identity covariance matrix.2 Equation (5) may
be viewed as a linearized, noisy continuous-time recurrent
neural network (CTRNN) with I corresponding to a leak cur-
rent term [28–30]. X(t) will then be multivariate Gaussian so
that (4) applies. The condition for stationarity of (5) is shown
to be:

Re(λ) < 1 for every eigenvalue λ of C (6)

and the covariance matrix � is shown to satisfy:

2� = I + Cᵀ� + �C . (7)

2Note that the noise input to different nodes is uncorrelated. If
we allow noise levels to differ per node, then we may recover an
equivalent equation to (5) by a simple linear transformation
of the connectivity matrix and a rescaling of activation levels.
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Several subsequent statistical measures derived from
information theory have attempted to quantify properties
analogous to complexity. These include information integra-
tion and causal density. Information integration, φ, is defined
as the effective information across the bipartition of a net-
work that exhibits the least mutual information [31] and
has been extended recently [32]. Here, a balance between
integration and segregation is captured as the lower bound
of the potential for a system to integrate information. In
contrast, although causal density [33] also has its founda-
tions in information theory, it is developed from the notion
of Granger causality [34] rather than mutual information.
Granger causality is a statistical measure of causality in which
a causes b if knowledge of the history of a helps predict the
future of b more than knowledge of the past of b alone. Causal
density is calculated as the fraction of interactions among ele-
ments that are Granger casually significant. Again, like TSE
complexity, it is argued that high causal density indicates the
presence of globally integrated but dynamically independent
elements [35].

Despite their wide application, a comprehensive under-
standing of the behavior of these measures and how they
relate to one another has yet to be established. Initial work in
this vein considering the relationship between network struc-
ture, dynamics, and complexity is reported in Refs. 26,36, and
37.

4. A SIMPLE MODEL
Here, we explore ensembles of spatially constrained net-
works each constructed over 128 nodes distributed uniformly
in hypercubes of various dimensionality, varying the length
scale of the interaction between the nodes. It is worth not-
ing that to control for the average distance between nodes
varying with the dimensionality, d, of the hypercube within
which they are embedded, we preserve the average magni-
tude of spatial relationships between pairs of nodes by scaling
all distances by 1/

√
d. We use continuous-valued connection

matrices to represent weighted connections between pairs of
nodes given by ωij = exp(−|rj − ri |/σ), where |rj − ri | is the
distance between nodes i and j. Connection weights between
pairs of nodes thus fall off exponentially with distance at a rate
which is defined by the interaction length, σ .

Figure 1 shows how complexity, C, varies with the log of
the interaction length, log10 (σ ). The first point to note is
that for low-dimensional spaces, complexity rises and falls
with interaction length.3 As the dimensionality of the space
increases and the strength of spatial constraints weaken,

3As the covariance matrix of a 1-d lattice is of Gaussian Toeplitz
form, this agrees with previous results demonstrating that
scaling in such matrices is associated with a rise and fall in
complexity [6].

peak complexity is reduced, until the contribution of space
disappears.

Consider first the case of nodes embedded in a low-
dimensional space. Where σ is very small, even the closest
nodes are far enough apart that the weighted connection
between them is of negligible strength. Consequently, the
network comprises a number of effectively isolated units
with low interaction complexity because of the lack of net-
work integration. As the interaction length increases, con-
nection weights between nearby nodes begin to increase, and
islands of strongly connected nodes are obtained. As a con-
sequence, interaction complexity increases. Eventually, inter-
action length increases to the extent that all network nodes
are close enough to each other to be strongly connected.
Although the dynamics on such a network are strongly inte-
grated at the level of the whole, interaction complexity is low
because there is little or no functional segregation at the level
of the parts.

Each plot in Figure 1 also presents values of complexity
for two null models in which some aspect of the spatial struc-
ture inherent in the original spatially embedded networks
is extinguished. In this way, we are able to decompose the
contribution of spatial embedding to a network’s interaction
complexity. First, dotted lines represent the complexity of
networks in which each node retains the same distribution
of afferent connection strengths as in the original network,
but these weighted connections are randomly assigned rather
than determined by spatial proximity. To achieve this, the
entries of each row in the original weight matrix are shuf-
fled, preserving the values of a node’s afferent weights (and
their sum) but assigning them at random to the population
of nodes. Dashed lines represent the complexity of networks
generated by a second null model in which the connec-
tion strengths of the original spatial networks are shuffled
as before, but in a manner that preserves reciprocity (i.e.,
ωij = ωji). Should a shuffle swap matrix element ωij with ωi′j ,
we must also swap elements ωji and ωji′ . It is worth noting that
in this case the sum of the magnitude of the afferent weights
may not be preserved.

To a significant degree, the effect of spatial organization on
complexity is clearly accounted for by the reciprocal nature
of spatial interactions (and to a larger degree than the mere
distribution of afferent weights). However, particularly in low
dimensions, the impact of spatial constraints exceeds that of
mere reciprocity, suggesting that higher order structures are
significant (see Ref. 26 for a complete account).

Why do we see a peak in complexity at a particular length
scale for each value of d? In fact, this peak coincides with a
particular degree of network “connectance.” To demonstrate
this, we discretize each weighted, spatially embedded net-
work, by reinterpreting each entry in the weight matrix as
the probability that a pair of nodes will be connected with a
weight equal to unity. In this way, each continuous matrix can
be mapped to an ensemble of binary networks from which a
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FIGURE 1

Plots of complexity versus the log of the interaction length, log10(σ ), for networks embedded within 1-d, 2-d, 3-d, and 128-d hypercubes. All networks
comprise N = 128 nodes, with 30 networks being generated for each data point. Solid curves represent the mean complexity, C, of spatially embedded
systems with continuous weights varying inversely with distance. Dotted and dashed lines indicate the complexity of networks derived from two null models
in which aspects of spatial organization are extinguished (see text). Gray vertical lines mark the peaks of complexity for discretized networks with the same
interaction length, which agree well with the peak in complexity for the associated continuous system. The scaled number of discretized network components
is also presented (circles), falling from N (a totally disconnected system) to unity (a supercluster).

random sample can be drawn and their properties calculated.
For each binary network, we enumerate the number of dis-
connected network components (isolated fragments of net-
work). As this value falls to unity with increasing σ , the graph
is becoming completely connected, indicating the onset of
a single giant component or supercluster [38, 39]. Figure 1
shows that maximal complexity coincides with the onset
of this giant component in the binary ensembles. The gray
vertical line also indicates that maximal complexity of the
binary networks themselves agrees with that of the contin-
uous weighted networks from which they are derived. These
results suggest that complexity is associated with the achieve-
ment of a single strongly coupled component in a continuous
network. Furthermore, the interaction length required for
onset of the strong component (and thus high complexity)
increases with increasing spatial dimensionality.

5. DISCUSSION
The results reported here demonstrate that spatial con-
straints on connectivity contribute directly to interac-
tion complexity. A network comprising a uniform random
distribution of locally connected nodes enjoys increased

complexity as a result of the strong spatial constraints
imposed by a low-dimensional embedding. As these con-
straints are relaxed (by increasing the dimensionality of the
space) or eroded (by shuffling the connection strengths),
complexity falls. The pairwise reciprocity of spatial network
connectivity (itself stemming from the fact that the distance
from node i to node j must be equivalent to the distance in
the reverse direction) is strongly implicated in the elevated
complexity of spatially embedded networks, but does not
entirely account for it. Rather, the property stems from spa-
tial embedding imposing correlations at several topological
scales.4

Interestingly, our results also suggest that high network
complexity is associated with the onset of a strongly cou-
pled supercluster.The fact that the coupling strength required
for its onset is much smaller in networks embedded within

4We are able to show, using a graph–theoretic analysis, that
the TSE complexity measure is directly dependent on the fre-
quency of loop motifs within the network (Barnett, Buckley,
and Bullock, manuscript in preparation)
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low-dimensional spaces suggests that stronger spatial
constraints may make high complexity achievable with
fewer/weaker network connections.

Open questions that could be addressed in further work
include the following. Which graph–theoretic properties of
the supercluster are associated with high complexity, e.g., its
size, clustering coefficient, modularity, etc? To what extent do
the results presented here carry over to networks where, in
general, ωij �= ωji , but there remains an influence of spatial
separation on node connectance.

6. CONCLUSION
Here, we have demonstrated that spatially constrained net-
work topologies exhibit complexity that differs from equiv-
alent random nonspatial graphs. We have shown how spa-
tial structure can impact on interaction complexity via its
influence on topological structure. In summary, the inher-
ent constraints imposed on a system by projecting it into
a low-dimensional space can be enabling for complexity in
that these constraints predispose systems to exhibit elevated
levels of complex interactivity for free.
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