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Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the
Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat
specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to
network structure disregarded. In this paper we introduce a model framework to analyze the mediation of
network structure by spatial embedding; specifically, we model connectivity as dependent on the distance
between network nodes. Our spatially embedded random networks construction is not primarily intended as an
accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial
embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some
constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale
free degree distributions and the existence of small-world spatial networks. We also derive some standard
structural statistics for spatially embedded networks and illustrate the application of our model framework with
concrete examples.

DOI: 10.1103/PhysRevE.76.056115 PACS number�s�: 89.75.Hc, 05.10.Ln, 64.60.Ak, 89.75.Da

I. INTRODUCTION

Within the last decade or so advances in computational
power have revealed two distinctive characteristics of real-
world networks that are clearly not explicable in terms of the
standard �Erdös-Rényi� random graph model �1�: namely, the
small world effect �2�, where shortest connected paths be-
tween network nodes appear to be surprisingly small in the
context of network size �and clustering� and scale free degree
distribution �3�, where the number of connections to a ran-
domly selected node follows a power law distribution. The
seminal studies �2,3� supplied putative mechanisms for mod-
eling these seemingly ubiquitous properties and subsequently
initiated an explosion of interest and research in the field of
complex networks.

Many of the networks studied with respect to these twin
paradigms have a spatial element, be it that network nodes
�and frequently connections� reside in a “real” �Euclidean�
space, or at least in some abstract space with a natural notion
of “distance” between nodes. A common feature of many of
these networks is that connectivity will be in some way re-
lated to spatial embedding. For instance, communications
networks may involve range-dependent links; social net-
works may involve distance-limited interactions between
agents existing in some �possibly abstract� space; transport
networks have an obvious spatial embedding while, more
generally, technological/commercial networks frequently
feature some cost-per-distance constraint on connectivity. We
remark that, apart from the influence of spatial embedding on

network structure, we might also expect space to have im-
portant consequences for the dynamics of processes associ-
ated with networks �e.g., the flow of information across a
communication networks�; although we do not address this
issue here, we bear it in mind as a cogent motivation for the
study of spatial embedding and as a worthwhile direction for
future study.

In the context of the myriad mechanisms in the burgeon-
ing complex networks literature purporting to account for
various network structural aspects, the spatial element has,
arguably, been somewhat neglected. Existing studies of spa-
tially embedded networks have tended to be domain specific
and aimed at modeling �more or less realistically� some spa-
tial aspect of network formation �4–12� or, at least, to ad-
dress somewhat restrictive spatial embeddings �13–16�. It
thus seems timely to inquire on a more explicit and inclusive
level into the constraints on network structure implied by
spatial embedding.

Our starting point in this study is that there exists some
relationship between internode spatial distance and connec-
tion probability; more specifically, the model presented here
assumes that connectivity is purely a function of internode
distance. Of course, in real-world networks this is unlikely to
be quite so literally the case; we might expect connectivity to
be influenced by, rather than completely prescribed by dis-
tance considerations. It is also essentially a static model,
whereas many �if not most� real-world complex networks
evolve according to some dynamic growth process. Our
model should thus, perhaps, be viewed as a tool or frame-
work for garnering insight into the effects of spacial embed-
ding on network structure—a “random graphs in space,” if
you like—rather than as a realistic model for any specific
class of real-world spatial networks. On a practical note, we
encounter the inevitable balancing act between generality
and analytic tractability. Hopefully our model is extensible in
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both directions; that is, it may be easily specialized to more
tractable �and quite likely more domain-specific� scenarios
while at the same time some of its more restrictive limita-
tions might be relaxed.

II. THE SERN MODEL

The idea of our spatially embedded random networks
�SERN� model is that nodes are placed randomly and inde-
pendently according to a specified distribution on some met-
ric space. An edge is then assigned independently to each
pair of distinct nodes with probability depending only on the
distance between the nodes. In the interests of simplicity and
analytical convenience we explicitly preclude both self-
connection and multiple connections; most results presented
here extend reasonably straightforwardly to the case where
either or both are admitted.

Definition 1. A SERN ensemble of size N �i.e., of N
nodes� is specified by the following.

�1� A metric embedding space S with metric d :S�S
→R+; S is to represent the space in which network nodes
reside.

�2� A connectivity decay function � :R+→ �0,1�; ��s� is to
represent the probability of assigning an edge to a pair of
nodes distance s apart.

�3� A node distribution random variable (rv) X taking val-
ues in S; X is to represent the location in S of a randomly
situated node.

�4� A number N� �1,2 ,3 , . . . � of nodes.
As regards the embedding space, although the construc-

tion may be applied to any metric space, the principal situa-
tion we have in mind—and to which we restrict ourselves in
this study—is that where S is a Riemannian manifold, pos-
sibly with boundary. In this case we assume that the measure
on S under which the node distribution random variable X is
defined is the volume element associated with the Riemann-
ian metric and that the �global� metric be compatible with the
Riemannian metric �17�. Note that we do not demand that the
metric be identified with geodesic distance as we would like
to admit the case where the global metric is inherited from an
embedding space; for example we might take distance be-
tween points on a circle as Euclidean distance in a plane in
which the circle is embedded, rather than as distance around
the perimeter of the circle. We note too that while we refer to
��s� as a “decay” function, it need not necessarily decrease
monotonically with distance; nevertheless, we might expect
it generally to do so in any realistic scenario, e.g. on grounds
of per-distance connection cost for technological networks or
of increasing density of “obstacles” to connection with dis-
tance �6,12�.

To instantiate a network from a SERN ensemble of size
N, we sample X independently N times to yield nodes at
x1 ,x2 , . . . ,xN�S. We then assign connections independently
with probability �(d�xi ,xj�) to each of the 1

2N�N−1� potential
edges. Though essentially static, we might also view this
construction as a dynamic growth model �18,19�, where
nodes—and their connections—are assigned sequentially. In
general we shall be interested in properties of large net-

works; i.e., for N�1. How we approach this is described in
detail in Sec. III A.

We might at this point identify an apparent limitation of
the SERN model: sampling node locations independently
and identically from a single distribution X arguably pre-
cludes many plausible node distributions, in particular those
exhibiting certain kinds of spatial clustering. A reasonable
generalization would be to replace independent sampling
from a single random variable with a more general spatial
point process �20�; indeed, our distribution X might be
viewed as a �heterogeneous� Poisson point process. We in-
tend to address this generalization in a later paper. Neverthe-
less, we justify our model as a baseline for a theory of spatial
networks; it might be taken to stand towards more realistic
spatial network models as classical �Erdös-Rényi� random
graphs stand towards the many more sophisticated nonspa-
tial network models.

A. Relation to existing models

Antecedents for our SERN construction include the
Watts-Strogatz small world model �2� �which might already
be said to have a spatial element insofar as nodes are pref-
erentially connected to “nearby” nodes� and more pertinently
random geometric graph �RGG� models �13,14�. Indeed
RGGs may be considered a specialization of our SERN
model, where the embedding space is Euclidean, the node
distribution uniform, and the connectivity decay function a
simple cutoff at a characteristic distance. In Sec. V we ex-
amine a generalization of RGGs to more general spaces and
node distributions. We remark here that uniformity of the
node distribution in traditional RGGs is indeed a significant
restriction; as we shall see below, some intriguing aspects of
our generalization are direct consequences of nonuniformity.

Other relevant work includes Ref. �4�, which models con-
nectivity in the Internet as dependent on spatial distance with
exponential decay and Ref. �6�, where a connectivity decay
mechanism similar to our ��s� is induced by a density of
“obstacles” in a communication network model situated in a
two-dimensional arena containing uniformly randomly dis-
tributed nodes.

The principal defining property as regards connectivity in
the SERN model is the connection probability:

c�x,y� � �„d�x,y�… �1�

for x ,y�S, which specifies the probability that nodes lo-
cated at x ,y be connected. Indeed, all �nonspatial� properties
of our model are specified by a symmetric function c :S
�S→ �0,1�. Simply specifying c�x ,y� rather than d�x ,y�
and ��s� yields a model akin to the related “fitness,” “type,”
or “hidden variable” models proposed in various forms in
�21–24�. In these models each node is independently as-
signed a �real or integer-valued� hidden variable drawn inde-
pendently from a specified distribution and connections are
independently assigned according to a symmetric function of
the hidden variables associated with the endpoints. The chief
difference with our model is that our “hidden” variables have
an explicit interpretation as spatial locations of nodes rather
than mere abstract numerical quantities, while the symmetric
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function depends solely on spatial distance between nodes
and is thus constrained by the geometry of the underlying
space. Indeed, while in this paper we address only connec-
tivity statistics—those structural properties such as mean
node degree, component size, path length, etc.—we nonethe-
less maintain the distinction between metric and decay on
physical grounds, and in particular with regard to scaling in
the large network limit �Sec. III�. Inherently spatial statistics
�such as mean physical path length� which depend on the
spatial embedding of nodes warrant a study of their own and
might be expected to be of particular significance to the
analysis of processes on spatially embedded networks.

B. Fundamental properties

We remark that a SERN is essentially an “ensemble-of-
ensembles”; that is, there are two levels of randomness: node
placement and—given node placement—edge assignment.
Generally all expectations and moments are, unless indicated
to the contrary, taken to be averaged over the full ensemble-
of-ensembles. If we wish to consider expectation of a prop-
erty P, say, conditional on node placement X
��X1 ,X2 , . . . ,XN� we use the language of conditional expec-
tation and write E�P �X� �note that this is a random variable
�25��.

The mean connectivity is defined to be

� � E„c�X,Y�… , �2�

where Y is independent and identically distributed �iid� as X
�the expectation is guaranteed to exist since c�X ,Y� is
bounded�. Note that � corresponds to the connection prob-
ability p in a standard Erdös-Rényi random graph, which
may indeed be considered a special case of our model with
connection decay probability ��s�= p independently of dis-
tance s. We also define

�2 � var„c�X,Y�… , �3�

� � corr„c�X,Y�,c�X,Z�… , �4�

where Y ,Z are iid as X, as the connectivity variance and
connectivity correlation, respectively.

Suppose we have a SERN ensemble of size N. Let the
random vector X��X1 ,X2 , . . . ,XN�, where the Xi are iid as
X, specify a node distribution. We define the �random� con-
nectivity matrix C by

Cij � 	c�Xi,Xj� , i � j

0, i = j .
�5�

The Cij are thus jointly distributed random variables and Cij
is just the probability that nodes i , j are connected �26�. For
distinct indices i , j ,k , l we have

E�Cij� = � , �6�

var�Cij� = �2, �7�

cov�Cij,Cik� = ��2, �8�

cov�Cij,Ckl� = 0. �9�

For x ,y�S let A�x ,y� denote a Bernoulli trial �27� with
probability c�x ,y�; i.e.,

P„A�x,y� = 1… � c�x,y� . �10�

The �random� adjacency matrix A is then defined by

Aij � 	A�Xi,Xj� , i � j

0, i = j .
�11�

The Aij are thus jointly distributed Bernoulli trials with Aij
=1 iff nodes i , j are connected and zero otherwise. For dis-
tinct indices i , j ,k , l:

E�Aij� = P�Aij = 1� = � , �12�

var�Aij� = ��1 − �� , �13�

cov�Aij,Aik� = ��2, �14�

cov�Aij,Akl� = 0. �15�

An essential feature of the SERN model is that edge as-
signment is “conditionally independent” given node place-
ment X; that is, the Aij �X are independent. More explicitly,
given x= �x1 , . . . ,xN� say, the random variables A�xi ,xj� are
independently—but not, of course, identically—distributed.
We note that C and A are related by

E��Aij�X� = Cij . �16�

It will also turn out to be convenient to define the following
sequences of higher-order connectivity moments, which we
may associate with the network structural “motifs” �19� sug-
gested by their respective descriptions �Fig. 1�:
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FIG. 1. Network motifs corresponding to connectivity moments �Eqs. �17a�–�17c��.
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Fan moments: �n � E�C12C13 . . . C1,n+1� ,

n = 1,2, . . . ,N − 1; �17a�

Chain moments: �n � E�C12C23 . . . Cn,n+1� ,

n = 1,2, . . . ,N − 1; �17b�

Loop moments: �n � E�C12C23 . . . Cn,1� , n = 3,4, . . . ,N .

�17c�

Since the Cij are bounded all expectations are guaranteed
to exist. Note too that the labeling of nodes 1 ,2 , . . . is arbi-
trary �and, since the Xi are iid, irrelevant�. This construction
might be generalized to arbitrary motifs as follows: if G is
any graph, then we could define ��G� to be the appropriate
expectation over all subgraphs of our network isomorphic to
G.

We have the identities

�1 � �1 � � , �18�

�2 � �2 = ��2 + �2. �19�

III. STATISTICAL PROPERTIES
OF SERN ENSEMBLES

A. The large network limit

As mentioned in Sec. I, we shall be concerned chiefly
with the connectivity statistics of “large” networks. More
precisely, we consider limiting properties of sequences of
SERN ensembles of size N as N→�. For such sequences we
restrict ourselves to the case where both the underlying met-
ric space S ,d�· , · � and node distribution X are held fixed �28�
and only the decay function ��s� is scaled with network size.

In the passage to the limit we follow common �but not
exclusive� practice in network theory and keep the mean de-
gree of nodes fixed. We shall see in the next section that for
a SERN ensemble of N nodes this is just �N−1��; we thus
introduce the mean degree parameter:

	 � �N − 1�� . �20�

Now, unlike Erdös-Rényi random graphs where we have a
single real-valued scale parameter p, scaling a SERN en-
semble involves scaling a function ��s� with potentially in-
finite degrees of freedom. There is therefore no unique “ge-
neric” scaling mode; rather, for given mean degree 	, scaling
of connectivity with increasing network size requires a se-
quence of decay functions �N :R+→ �0,1� under the con-
straint that 	 be held constant. By abuse of terminology, in
referring to “a large SERN ensemble” �cf. Sec. I�, it is to be
understood that such a scaling sequence is implicit, although
in the interests of notational brevity we generally suppress
the subscript N.

We return to the topic of scaling later; we shall see that
network structure in the large network limit may depend cru-
cially on the precise scaling model �cf. Sec. IV�.

B. Degree distribution

Let the rv

Ki � 

j

Aij �21�

�i=1, . . . ,N� denote the degree of node i. The Ki are identi-
cally �but not independently� distributed as K, say. We thus
find immediately that the mean degree of a randomly se-
lected node is

E�K� = �N − 1�� = 	 . �22�

More generally, the joint probability generating function
�pgf� �29� of the Ki is

G�z1, . . . ,zN� = E�z1
K1 . . . zN

KN�

= E��
i
j

�zizj�Aij = E��
i
j

�1 − �1 − zizj�Cij� .

�23�

The pgf for the degree of an arbitrary node �node 1, say� may
be calculated as follows:

G�z� = E��
1
j

�1 − �1 − z�C1j�
= E�E��

1
j

��1 − �1 − z�C1j��X1� �24�

=E��
1
j

�1 − �1 − z�E��C1j�X1�� �25�

=E��1 − �1 − z�E�„c�X,Y��X…�N−1� , �26�

with Y iid as X. At step �24� we condition on X1; at step �25�
we use the fact that the C1j given X1 are independent and at
step �26� that the E�C1j �X1� are all equal to E(c�X ,Y� �X). It
is now convenient to introduce the function:

��x� � E„c�x,Y�… , �27�

which represents the mean connectivity for a node at x�S
and we define the conditional mean degree to be the random
variable:

� � �N − 1���X� = �N − 1�E„c��X,Y��X… . �28�

We may then write, Eq. �26� as

G�z� = E��1 −
1

N − 1
�1 − z���N−1 . �29�

� completely determines the degree distribution. Intuitively,
� describes how mean node degree varies with location of a
node in S. In particular �cf. Eq. �25� below� its variance may
be considered a measure of the “spatial inhomogeneity” of
connectivity of a SERN ensemble. The nth moment of � is
given by

E��n� = �N − 1�n�n = 	n�n

�n , �30�

where �n is the nth fan moment �17a�. In particular,

E��� = �N − 1�� = 	 ,
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var��� = �N − 1�2��2 = 	2��2

�2 − 1 �31�

and we see immediately that if the connectivity correlation �
vanishes then � has zero variance and is �almost surely�
constant. The degree distribution is then binomially distrib-
uted and we might expect such networks to behave some-
what like random graphs; but note that statistical properties
�such as clustering� which do not derive purely from the
degree distribution may not be assumed to be as for random
graphs. A particular situation where connectivity correlation
vanishes is described in the next section.

In the large N limit, provided limN→�� exists,

G�z� → E�e−�1−z��� , �32�

so that the degree distribution of a SERN ensemble is given
by

P�K = k� →
1

k!
E��ke−�� �33�

for k=0,1 ,2 , . . ..
Two further technical results are stated here as follows:
Proposition 1. In the large network limit:



j�i

Cij → � �34�

in distribution for any i.
Proof. We have

G�z� = E�e
j�i ln�1−�1−z�Cij�� , �35�

→E�e−�1−z�
j�iCij� , �36�

for large N, since the individual Cij→0. Comparing with
�32� and noting that G�z� is just M��z−1�, where M��t� is the
moment generating function for �, the result follows from
the continuity theorem �29�. �

Proposition 2. Let the rv  be the largest eigenvalue of
the connectivity matrix C. Then in the large network limit,
→� in distribution.

Proof. Since C is real, symmetric and presumably non-
zero, the Perron-Frobenius theorem tells us that such a real-
valued  exists and is associated with a real, positive �ran-
dom� eigenvector V= �V1 , . . . ,VN�, say. Then 
 jCijVj =Vi

and summing over i we have �
iVi�=
i,jCijVj. But from
Proposition 1 we have 
iCij→� and the result follows. �

As an example, if the decay function ��s� is const=�, so
that our ensemble is a simple random graph with Cij =� for
all i� j, then the characteristic equation for C is �
+��N−1�− �N−1���=0 so that =	=� in the large net-
work limit.

C. Special SERN ensembles

At this point we introduce some subclasses of SERN en-
sembles with specialized spatial/statistical properties.

1. Poisson ensembles

From Eqs. �31� and �32� we see that if limN→�� exists and
var���→0 �equivalently

�2

�2 →1� as N→� then the degree

distribution tends towards a Poisson distribution with param-
eter 	. We shall call such an ensemble Poisson. Note that it is
not sufficient merely that �→0 �cf. Sec. V�.

2. Uniform ensembles

We describe a SERN ensemble as uniform if the node
distribution X is uniform; it follows that the underlying space
S must then have finite measure.

3. Spatially homogeneous ensembles

We describe a SERN ensemble as �spatially� homoge-
neous if ∀x ,y�S there exists an isometry � :S→S of S
�i.e., metric-preserving 1−1 mapping of S onto itself� that
maps x to y and such that ��X� has the same distribution as
X. Since an isometry preserves the volume element on S, it
is necessary �but not sufficient� that the ensemble be uni-
form.

Proposition 3. Let Y be iid as X. Then if the network is
homogeneous X and d�X ,Y� are independent.

Proof. Pick some fixed x0�S. Then for any x�S we can
find an isomorphism � such that ��x�=x0. For any a�R+ we
have

P„d�x,Y� � a… = P�d„x0,��Y�… � a� = P�d�x0,Y� � a� .

Thus the distribution of d�x ,Y� does not depend on x and the
result follows. �

Proposition 4. Let Y ,Z be iid X. Then if the network is
homogeneous d�X ,Y� and d�X ,Z� are independent.

Proof. Let dV�x� be the volume element on S. For any
a ,b�R+ we have

P„d�X,Y� � a,d�X,Z� � b…

= �
S

P„d�x,Y� � a,d�x,Z� � b…dV�x�

= �
S

P„d�x,Y� � a…P„d�x,Z� � b…dV�x�

by independence of Y, Z. But from Proposition 3,
P(d�x ,Y��a)=P(d�X ,Y��a)∀x and the result follows. �

Corollary. If a SERN ensemble is homogeneous then the
connectivity correlation � vanishes.

In particular, a homogeneous ensemble is Poisson pro-
vided that limN→�� exists.

We thus see �cf. Sec. III C 5 below� that spatial symmetry
imposes a rather severe constraint on network structure.

4. Uniformly continuous ensembles

Suppose that the density of the node distribution X is
uniformly continuous �30�; we then describe the correspond-
ing SERN ensemble as uniformly continuous. The uniformly
continuity condition says roughly that small changes in loca-
tion x�S effect small changes in the density of X �continu-
ity� and of a magnitude depending only on the size of the
change in x and not on x itself �uniformity�. As an example,
the function f�x�=e−x2/2 on the real line is uniformly continu-
ous, while the function 1 /x on the interval �0,1� is continu-
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ous, but not uniformly so. We note that any uniform �and in
particular any homogeneous� ensemble is uniformly continu-
ous �see also Sec. V A�.

5. Scale free ensembles

Following the argument in �15� we find that the degree
distribution of a SERN ensemble will be scale free iff there
is some m�1 such that E��n� diverges for all n�m in the
large network limit N→�. From Eqs. �30� and �20� we thus
have:

Proposition 5. A SERN ensemble is scale free iff ∃m�1
such that for all n�m,

�n

�n →� as N→�.
Clearly a Poisson ensemble cannot be scale free. In �15� it

is demonstrated that scale free spatial networks do indeed
exist; see also our Example 2 of Sec. V C.

6. Generalized random geometric graphs

Spatial network models with truncation decay:

��s� � 	1, 0 � s 
 r

0, r � s
�37�

so that r→0 as N→� have been quite widely studied in the
literature—albeit exclusively for flat manifolds with uniform
node distribution—as random geometric graphs �RGGs�
�13,14�. Frequently, the emphasis has been on analysis of
thresholds for the appearance of various structural properties,
often using sophisticated techniques from continuum perco-
lation theory. We generalize RGGs to arbitrary SERN en-
sembles with truncation decay; that is, S may be any Rie-
mannian manifold and the node distribution X is not
necessarily uniform. Generalized random geometric graphs
�GRGGs� offer the possibility of being far more tractable to
analysis than SERN ensembles in full generality; this is
largely down to the observation that as N→� we always
average quantities increasingly locally. We shall examine
GRGGs in more detail in Sec. V.

D. Clustering coefficient

Our definition of clustering coefficient C will be “the
probability that a random triplet of distinct nodes form a
triangle, given that it form an ‘elbow’ ”—this corresponds to
the �more or less� standard version of

C �
3 � no. of triangles

no. of “elbows”

—but, we note there are two feasible ways to average this
quantity over a SERN ensemble: �i� for a given node distri-
bution X we construct the clustering coefficient for the
�sub�ensemble with node distribution X—then we average
the coefficients over X. �ii� node triplets are sampled from
ensembles with different node distributions. Here we choose
the second definition as being by far the easier to calculate,
both analytically and in Monte Carlo simulation. Without
loss of generality we label the nodes 1, 2, and 3 �with the
“elbow” at node 1� so that

C � P��A23 = 1�A12 = 1,A13 = 1� =
�3

�2
, �38�

that is, the third loop moment divided by the second fan
moment.

E. Degree correlation

Firstly, we calculate the conditional mean degree of an
arbitrary node; i.e., for k=0,1 ,2 , . . . we calculate the mean
degree 	̄�k� of an arbitrary node conditional on it being con-
nected to a node of degree k. Without loss of generality we
take the nodes to be labeled 1 and 2. We then have

	̄�k� � E��K2�A12 = 1,K1 = k� . �39�

Let us define the joint conditional generating functions �cf.
�24��:

G�z1,z2� � 

k1,k2

P��K1 = k1,K2 = k2�A12 = 1�z1
k1z2

k2. �40�

Analogously to Eq. �27�, we define

��x,y� � E„c�x,Z�c�y,Z�… �41�

for x ,y�S, where Z iid as X. Using the shorthand notation

C � c�X,Y� , �42�

�1 � ��X� , �43�

�2 � ��Y� , �44�

� � ��X,Y� , �45�

we may then calculate

�G�z1,z2� = z1z2E„C�1 − �1�1 − z1� − �2�1 − z2�

+ ��1 − z1��1 − z2��N−2
… . �46�

Setting

gk�z� � � 1

k!

�kG�z1,z�
�z1

k �
z1=0

, �47�

we may now verify that

	̄�k� =
gk��1�
gk�1�

, �48�

and we have

�gk�z� = �N − 2

k − 1
zE„C��1 − ��1 − z��k−1

��1 − �1 − ��2 − ���1 − z��N−k−1
… , �49�

so that

�gk�1� = �N − 2

k − 1
E„C�1

k−1�1 − �1�N−k−1
… , �50�
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�gk��1� = �gk�1� + �N − 2

k − 1
�k − 1�E„C��1

k−2�1 − �1�N−k−1
…

+ �N − 2

k − 1
�N − k − 1�E„C��2 − ��

��1
k−1�1 − �1�N−k−2

… . �51�

Let us now define

Pk�x� � P��K = k�X = x� =
1

k!
��N − 1���x��ke−�N−1���x�

�52�

for x�S and set

�2�k� � E„c�Y,Z�c�X,Y�Pk−1�X�… , �53�

�3�k� � E„c�Y,Z�c�X,Y�c�X,Z�Pk−2�X�… . �54�

We may think of these as “degree conditional” versions of
the corresponding connectivity moments. In the large N limit
�with k�N� we then find that

	̄�k� � 1 + N2�2�k� + �3�k� − �3�k + 1�
kP�K = k�

. �55�

We may express the �conditional� degree correlation in
terms of partial derivatives of the generating function �40� at
z1=z2=1. It may then be calculated from Eq. �46� to yield
�approximately for large N�

corr��K1,K2�A12 = 1� �
�1	 + C
�2	 + 1

, �56�

where we define

�1 �
��3 − �2

2

�2�2
, �57�

�2 �
��3 − �2

2

�2�2
. �58�

We note firstly that the clustering coefficient C is always �0;
�2�0 follows from the Cauchy-Schwartz inequality �29�,
noting that �n=E(��X�n). In the general case, �1 might be
negative. Figure 2 illustrates the effects of the factors
C ,�1 ,�2 entering into the expression �56� for degree corre-
lation. Clustering is associated with increased degree corre-

lation via shared edges creating a loop; �2 corresponds to
small fans emanating from one of the connected nodes, de-
creasing degree correlation. �1 corresponds to short chains
passing through the connected nodes, affecting degree corre-
lation according to the sign of �1. We note that in the Poisson
case �2�0, so that the conditional degree correlation is just
�1	+C. In general, we might say intuitively that while clus-
tering exerts a “homogeneous” correlating effect on degree,
“inhomogeneity” �in the sense of spatial variation of connec-
tivity� exerts an effect on degree correlation via thecoeffi-
cients �1 ,�2 �see in particular Sec. V A below�. We note that
a necessary condition that degree correlation be disassorta-
tive is that �1
0. It is not clear under what conditions this
might occur; in Sec. V A we shall see that for uniformly
continuous GRGGs �and, we conjecture, in fact for any
GRGG� we have �n=�n for all n, so that �1=�2 and degree
correlation is always assortative.

F. Giant component

For their “configuration model” Newman et al. �18,31�
developed a powerful generating function formalism to
derive—amongst other things—approximations for the phase
transition to the appearance of a giant component and the
size of the giant component beyond the phase transition. We
cannot apply this formalism mutatis mutandis for two rea-
sons: firstly—unlike the configuration model—node degrees
�conditional on node distribution� are neither identically nor
independently distributed for SERN ensembles. Secondly,
the formalism depends on neglecting the probability of loops
in small components; since SERN ensembles may well fea-
ture significant clustering this assumption is likely to be non-
viable.

As an example, in �31� the following argument is used to
derive the size of the giant component for the configuration
model in the large network limit: assume there is a giant
component and define u to be the probability that an arbitrary
node does not belong to the giant component. Then none of
that node’s neighbors must belong to the giant component,
leading to the “consistency relation”:

u = G�u� , �59�

where G�z� is the generating function for node degree �29�.
We can then—at least in principle—solve Eq. �59� for u
�apart from the trivial solution u=1�. The problem in our
case is that in deploying this procedure naively we disregard
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FIG. 2. Motifs corresponding to degree correlation factors �Eqs. �56�, �38�, �57�, and �58��.
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the fact that given a particular node distribution X the prob-
ability that a node belong to the giant component will vary
with the choice of node. We should not be surprised, then,
that Eq. �59� yields in general a poor approximation for u. In
the large network limit Eq. �59� becomes

u = E�e−�1−u��� . �60�

For Poisson ensembles in particular, we have �=const=	
and Eq. �60� becomes in the large network limit:

u = e−	�1−u� �61�

which may be solved in terms of �the principal branch of�
Lambert’s W function as

u = −
1

	
W�− 	e−	� �

1

	
e1−	, �62�

which suggests, among other things, a phase transition at 	
=1 as for Erdös-Rényi random graphs; however, as demon-
strated in �14� for uniform random geometric graphs �see
Sec. V� on Euclidean space there is indeed a phase transition
to the appearance of a giant component, but the critical con-
nectivity in fact varies with spatial dimension, with the tran-
sition at 	=1 the limiting value for large dimension. In ef-
fect, clustering—which decreases with increasing dimension
�14�—renders the procedure inaccurate.

A more exact approach to the “consistency relation” argu-
ment runs as follows �see also �22� for a more precise deri-
vation for a comparable model�: given a node distribution X
let Ui—now jointly distributed with X—be the probability
that node i does not belong to the giant component. The
consistency relation then becomes

Ui = e−
jCij�1−Uj�. �63�

If we could extract a �possibly approximate� algebraic solu-
tion of Eq. �63� considered as a set of simultaneous equations
for the Ui then we could in principle calculate u=E�Ui�; this
would appear to be difficult, however, and we have not suc-
ceeded in doing so.

We in fact conjecture that, contrary to common assump-
tion, for general SERN ensembles there is a phase transition
only in the case of uniform ensembles; for all other en-
sembles, the fraction of the network occupied by the largest
component increases smoothly with increasing mean connec-
tivity 	. Intuitively, inhomogeneity in the spatial distribution
of nodes induces a clustering of connectivity around regions
of higher node density, which “smears out” the transition in
the following sense: for a fixed node distribution �63� may
yield a critical mean connectivity value, but this value will
depend on the particular node distribution so that criticality
is obliterated by the averaging process. This intuition is con-
firmed in all simulations we have performed with nonuni-
form ensembles �32� �see, e.g., Sec. V and Fig. 5�.

A further subtlety arises in that simulations suggest that if
mean connectivity 	 is below the phase transition, or if there
is no phase transition, then �holding 	 fixed� the fraction of
the network occupied by the largest component actually
shrinks as N→�; effectively, the network “breaks up” as
network size increases.

G. Mean path length

We need to consider carefully what exactly we intend by
“mean path length”; we would like to define the path length
random variable L to be the minimum number of edges we
need to traverse to connect two �distinct� randomly selected
nodes in a random instantiation of our ensemble. But note
that there may be no path connecting the nodes �specifically
when the nodes lie in different components�; in this case it is
customary, by abuse of terminology, to refer to the path
length as “infinite,” so that L takes values in �1,2 , . . . ,N
−1, � �. The most common approach is to take the condi-
tional arithmetic mean E�L �L
 � �; that is, we take the mean
over those pairs of distinct nodes for which a connecting
path exists. An alternative �and arguably better� approach is
to consider instead the harmonic mean 1 /E�1 /L�, which is
well defined if we define 1 /L�0 where there is no connect-
ing path.

We note that

P�L 
 � � � �1 − u�2, �64�

where u is as in the previous section; i.e., 1−u is the fraction
of the network occupied by the largest component. We note
that, as for the fraction of the network occupied by the larg-
est component �see previous section� P�L
 � � actually
shrinks as N→�; nonetheless, in all cases we have examined
in simulation mean path length �both conditional arithmetic
or harmonic� still appears to increase with network size.

Following �33� we may calculate the probability:

P�L = � � = F� − F�−1 �65�

for �=1,2 , . . . ,N−1 in the large network limit, where

F� � 1 − E„exp�− �C��12�… �66�

�and F0�0� yielding

P�L 
 � � = FN−1, �67�

E��L�L 
 � � = N − 

�=1

N−1

F�/FN−1. �68�

Now in �33� a specialization of the “hidden variable” model
introduced in �24� is analyzed in which the equivalent of our
Cij factorizes into the product of independent random vari-
ables. This allows the summation in Eq. �68� to be calculated
via the Poisson summation formula �30�; in our case the
nonseparability of the Cij would seem to preclude this ap-
proach and it is not clear how we should calculate either Eq.
�68� or indeed Eq. �67�.

IV. SMALL WORLD SERN ENSEMBLES

To investigate whether a SERN ensemble may exhibit
small world behavior it will become necessary to analyze
more closely the scaling mode of the decay function �Sec.
III A� in the large network limit in more detail. Consider
given a “base” decay function �̂�s�, which defines the
“shape” of the decay of connection probability with distance.
Some plausible base decay functions might be truncation
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decay, where nodes are connected iff they lie within a given
distance �cf. Sec. V�, linear decay, exponential decay, power
law decay, etc. Some intuitively “natural” ways to derive a
sequence of decay functions from a base decay function in
order to define a large network limit are �Fig. 3�:

�1� Reduce the connection probability by a constant fac-
tor:

�N�s� � �N�̂�s� �69�

and let �N→0 as N→� so as to maintain 	=const.
�2� Reduce the connection probability by a constant

amount:

�N�s� � �̂�s� − ��̂min − cN� �70�

�where �̂min is the minimum value of �̂�s� over its domain�
and let cN→0 as N→� so as to maintain 	=const; but note
that this imposes a limit on the largest possible N.

�3� Let characteristic decay length tend to zero �i.e.,
shrink the distance at which connections appear with given
probability�:

�N�s� � �̂� s

rN
 �71�

and let rN→0 as N→�, again while holding 	 constant.
Now Watts and Strogatz originally defined “small world”

to mean not just sublogarithmic scaling of mean path length
with network size, but also nonvanishing of the clustering
coefficient in the large network limit �2�. It is immediately
evident from Eq. �69� that scaling according to mode 1 above
will result in a vanishing clustering coefficient, since any
connectivity moment of order n clearly scales as �N

n . Mode 2
does not allow us to take N to arbitrarily large size. For mode
3 we might well expect �and simulation bears this out� a
nonzero clustering coefficient since “triangles” of nodes that
fall entirely within the connectivity radius will be fully con-
nected. However, the following heuristic argument suggests
that scaling according to mode 3 might also be expected to
lead to power law rather than logarithmic decay of mean
path length.

Suppose then that a decay function ��s� has the property
that ��s�=0 for s�r, say; that is, there will be no connec-
tions for nodes further apart than �spatial� distance r. Let the
random variable D�d�X ,Y�, jointly distributed with mean

path length L, be the distance between random nodes X ,Y.
We attempt to derive a lower bound on mean path length
based on the observation that for any r and �=1,2 , . . . ,N
−1:

D � � r ⇒ L � � , �72�

i.e., if two nodes are a greater distance than �r apart, then it
takes at least �+1 edges to link them. From this we deduce
that for the conditional arithmetic mean

E��L�L 
 � � �
1

r
E��D�L 
 � � �73�

if the conditional mean E�D �L
 � � exists. This is, perhaps,
not terribly useful except for the case where mean connec-
tivity is beyond a phase transition to formation of a giant
component, in which case we may treat the term E�D �L

 � � as constant. Similarly we find for the harmonic mean

1

E�1/L�
�

1

r

1

E�1/D�
�74�

again provided E�1 /D� exists �34�.
In either case, within the �admittedly rather restrictive�

provisos outlined above, we see that path length scales at
least as 1

r . Suppose now that a base decay function �̂�s�
satisfies �̂�s�=0 for s�1, say. We then have

� = r�
0

1

�̂�s���rs�ds , �75�

where ��s� is the density of d�X ,Y�, so that if ��s� is rea-
sonably well behaved we have approximately, for small r:

� � r� �76�

for some ��0 and, since we hold 	��N−1�� fixed, we see
from Eq. �73� �respectively, �74�� that conditional arithmetic
�respectively, harmonic� path length scales at least as N1/� as
N→�; in particular, it grows faster than logarithmically, so
that our network cannot be small world. We conjecture that
this is in fact always the case if connectivity decays accord-
ing to mode 3; simulations of various SERN ensembles �in-
cluding severely singular node distributions� under this scal-
ing mode bear out this conclusion.
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FIG. 3. Connection probability scaling modes �distance scale on x axis is arbitrary�.
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To summarize: reducing connection probability by a con-
stant factor may well result in mean path length scaling sub-
logarithmically with network size, but implies a vanishing
clustering coefficient. Reducing connection probability by a
constant amount does not allow passage to a large network
limit. Shrinking the connection radius may well yield a non-
zero clustering coefficient, but is likely to lead to superloga-
rithmic scaling of mean path length.

There is, however, a suggestion in �14� that we may
achieve small world behaviour in the sense of Watts and
Strogatz by deploying a combination of scaling modes �see
also �12,35��. We demonstrate a construction along these
lines in the following section.

Construction of small world ensembles

Consider the behavior of the clustering coefficient for a
decay function sequence:

�̃N�s� � �1 − qN��N�s� + qN, �77�

where �N�s� is a given decay function sequence yielding a
nonzero clustering coefficient CN→C�0 in the limit and
qN→0 as N→�. Indeed, if the �N�s� are truncation decay
�cf. Sec. V�, the resulting ensemble may be thought of as a
continuous analog of the original Watts-Strogatz model: a
small decay radius r leads to latticelike local connectivity,
while a uniform connection probability q corresponds to ran-
dom distance-independent �hence potentially long range�
connections. We wish to determine firstly how we may take

qN→0 in order that the clustering coefficient C̃ tend to a
nonzero limit. We wish to establish in addition whether ap-
propriate qN scaling can yield sublogarithmically scaling
�i.e., small world� mean path length.

Denoting quantities corresponding to the decay function
�77� by a tilde �from here forward we drop the subscript N
for notational clarity�, we have

�̃�x� = �1 − q���x� + q �78�

for x�S, and

�̃ = �1 − q�� + q , �79�

�̃2 = �1 − q�2�2 + 2q�1 − q�� + q2, �80�

�̃3 = �1 − q�3�3 + 3q�1 − q�2�2 + 3q2�1 − q�� + q3.

�81�

Setting ���2 /�2 we may calculate

C̃ − �̃ =
�1 − q���C − �� + 2q�� − 1�

� − 1 + �1 + q/�
1−q

2�
. �82�

In the large network limit and assuming C→const�0 we
have

C̃ →
�C + 2q�� − 1�

� − 1 + �1 + q/�2�
�83�

and we may state

Proposition 6. In the large network limit N→�, if C
→const�0 then C̃→const�0 iff:

I . � → const � 0 and
q

�
→ c

so that C̃ →
�

� − 1 + �1 + c�2C �84�

or II . � → � and
q

��2

→ c

so that C̃ →
1

�1 + c�2C �85�

for some constant c�0.
It follows that if C→const�0 we may always scale q

with � so that C̃→const�0 and �̃→0 as required. We note
that Case I covers Poisson ensembles, where ��1.

We also note from Eq. �78� that if our original ensemble is
Poisson, then so is the derived small world ensemble. We
may calculate for Case I that

�̃n

�̃n → �1 + c�−n

k=0

n �n

k
cn−k�k

�k , �86�

so that the derived small world ensemble is scale free iff the
original ensemble is scale free, while for Case II:

�̃n

�̃n → 

k=0

n �n

k
c−k �k

���2�k
, �87�

so that the derived small world ensemble is scale free iff ∃n0
such that �n / ���2�n diverges for all n�n0.

We now turn to mean path length scaling as N→�, hold-
ing mean degree fixed. Now it is clear from Eq. �79� that,
given fixed mean degree 	̃�N�̃ the mean path length for the
new ensemble satisfies

E„L�	̃,N�… � E„LRG�Nq,N�… , �88�

where LRG denotes path length for an Erdös-Rényi random
graph �36�, since the additional connection probability �1
−q�� in Eq. �79� can only decrease mean path length. Now
for Case I, q→c� for some constant c, so that in the large
network limit we find that q� c

1+c �̃, so that

E„L�	̃,N�… � E�LRG� c

1 + c
	̃,N� . �89�

Since we know that mean path length for a random graph
scales logarithmically with network size, it follows that so
too does E(L�	̃ ,N�) and the new ensemble is indeed small
world. For Case II we find that q� �̃ for large N so that

E„L�	̃,N�… � E„LRG�	̃,N�… , �90�

and the new ensemble is again seen to be small world.

V. GENERALIZED RANDOM GEOMETRIC GRAPHS

In this section we specialize the previously developed for-
malism to generalized random geometric graphs �GRGGs�
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�Sec. III C 6�, illustrating our analysis with some examples.
We note here that for GRGGs we always have

�2 � ��1 − �� � � �91�

in the large network limit.

A. Uniformly continuous GRGGs

Suppose we have a uniformly continuous GRGG �Secs.
III C 4 and III C 6� on a closed, oriented m-dimensional Rie-
mannian manifold S. Since as N→� we always average
quantities increasingly locally we may convince ourselves
that to lowest order in r we may approximate our space as
Euclidean; that is, to a first approximation curvature of S
may be neglected in the large network limit �this may be
demonstrated more rigorously by choosing a Riemann nor-
mal coordinate system �37� locally�. It is less obvious that if
S has a sufficiently well-behaved boundary, then the bound-
ary makes a negligible contribution to the connectivity mo-
ments in the large network limit.

We first consider the boundary-less case. By uniform con-
tinuity we have for any ��0 an r�0 such that d�x ,y�

r⇒ �p�y�− p�x� � 
�. Thus,

��x� � �
d�x,y��r

p�y�dV�y� , �92�

where dV�y� is the volume element in our chosen coordinate
system, satisfies

� ��x�
V�r;x�

− p�x�� 
 � , �93�

where V�r ;x� represents the volume of a ball of radius r
around x. But if r is chosen small enough, then to lowest
order in r, V�r ;x��Vm�r�, where

Vm�r� =
�m/2

�� m
2 + 1�

rm �94�

is the volume of a ball of radius r in a Euclidean space of
dimension m, and we have

��x� � Vm�r�p�x� �95�

to lowest order in r.
Now suppose S has a boundary �S. Let us denote by

�S�r� the set of points in S of distance at most r from �S.
From �95� we have

� � �
S

��x�p�x�dV�x� , �96�

�Vm�r�E„p�X�…

− �
�S�r�

�Vm�r� − V�r;x��p�x�2dV�x� .

�97�

But

�
�S�r�

�Vm�r� − V�r;x��p�x�2dV�x� � Vm�r��
�S�r�

p�x�2dV�x� ,

�98�

and if the boundary is piecewise smooth and we choose r
sufficiently small, then

�
�S�r�

p�x�2dV�x� � r�
�S

p�x�2dS�x� �99�

where dS�x� is the volume element on the boundary �S in
our chosen coordinate system, so that to lowest order in r:

� � Vm�r�E„p�X�… . �100�

In the limit of small r, then, nodes near the boundary make a
negligible contribution to �. The argument extends to higher
connectivity moments so that:

Proposition 7. For a uniformly continuous GRGG:

�n � Vm�r�nE„p�X�n
… �101�

for n=1,2 , . . . in the limit N→�. �
We note firstly that

�n

�n →
E„p�X�n

…

E„p�X�n
…

�102�

in the large network limit, so that
Corollary (1). A uniformly continuous GRGG can never

be scale free. �
and secondly, that

�2

�2 − 1 →
var„p�X�…
E„p�X�…2 �103�

in the large network limit, giving:
Corollary (2). A uniformly continuous GRGG is Poisson

iff it is uniform. �
It is straightforward to show also that �n��n to lowest

order in r for n=1,2 , . . . �we conjecture that this is, in fact,
the case for any GRGG�. Thus to calculate the conditional
degree correlation �56� we have �1��2��, say, for the co-
efficients �57� and �58�, which may then be calculated from
Eq. �102�. As we noted in Sec. III E that �2�0 always, we
have

Proposition 8. A uniformly continuous GRGG always has
assortative degree correlation. �

Furthermore, we see that as � increases from zero �the
Poisson or, equivalently, uniform case� so the conditional
degree correlation �56� increases from C to 1; we might in-
terpret this as saying that “inhomogeneity induces additional
degree correlation beyond that associated with clustering.”

From Eq. �91� we also see that

� =
�2 − �2

��1 − ��
→ 0 �104�

in the large network limit. If the GRGG is not uniform we
thus have an example of a non-Poisson SERN ensemble for
which the connectivity correlation tends to zero in the large
network limit �cf. Sec. III C 1�.
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The clustering coefficient for RGGs has been computed
analytically in �14�; there they note that C is independent of
network size and �mean� connectivity. For our GRGGs their
result still holds as a limiting case as N→�, although it need
no longer be constant. They find that C is always �0 and for
large dimension m:

C � 3� 2

�m
�3

4
�m+1�/2

. �105�

We note here that simulations indicate �see, e.g., Fig. 6�
that for GRGGs, mean path length—both conditional arith-
metic and harmonic—appears to scale as a power law in
network size as suggested by the discussion in Sec. IV and
that the exponent is reasonably well predicted by the lower
bounds given by Eqs. �73� and �74�. We note too that we may
construct a small world ensemble from a uniformly continu-
ous GRGG according to the procedure described in Sec. IV;
from Eqs. �102� with n=2 we see that uniformly continuous
GRGGs always fall under Case I of Proposition 6.

B. Example 1: A nonuniform uniformly continuous GRGG

We take the space Rm with Euclidean metric and node
distribution with Gaussian density:

p�x1, . . . ,xn� = �2��−m/2e−�x1
2+¯+xm

2 �/2. �106�

This node distribution is uniformly continuous, but nonuni-
form and hence non-Poisson. We may calculate:

� = P�m

2
,
r2

4
 , �107�

�
2−m

�� m
2 + 1�

rm, �108�

for small r �where P�a ,z��1−��a ,z� /��a� is the comple-
mentary normalized incomplete Gamma function� and in
general:
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FIG. 4. Degree distribution plotted on a log-log scale for several GRGGs �Sec. V� estimated in sample. Mean connectivity 	=32,
network size N=216, and sample size�106 for all figures.
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�n

�n � � 2n

n + 1
m/2

�109�

in the large network limit. Setting n=2 gives �2 /�2

= �4 /3�m/2; in the sense that var��� measures inhomogeneity
of node degree �Sec. III B and Eq. �31�� this suggests �some-
what counter-intuitively� that the ensemble becomes increas-
ingly inhomogeneous with increasing dimension. We have
also

� � ��4

3
m/2

− 1�� . �110�

The clustering coefficient is as calculated in �14� for a �Eu-
clidean, uniform� RGG of dimension m. The coefficient �1
=�2=� for the conditional degree correlation is given by

� = �3

2
m/2

− �4

3
m/2

. �111�

Degree correlation is thus always assortative, in accordance
with Prop. 8 above. We note that � increases with increasing
dimension while clustering decreases �Eq. �105��. The over-
all effect is that degree correlation increases, tending towards
1 in the limit; i.e., with increasing dimension, the effect of
inhomogeneity on degree correlation dominates the contribu-
tion from clustering.

Figure 4�b� plots the sampled degree distribution for 	
=32, N=216 for dimension m=6. The corresponding plot for
a uniform hypersphere �Fig. 4�a�� is plotted alongside; the
deviation from a Poisson distribution is clear.

In Fig. 5�b� the estimated fraction of the network occu-
pied by the largest component is plotted against mean con-
nectivity with increasing network size for dimension m=6.
Compared with the corresponding plot for a uniform hyper-
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FIG. 5. Fraction of network occupied by largest component �Sec. III F� plotted against mean connectivity with increasing network size,
for several GRGGs �Sec. V�, estimated in sample. The small arrow marks the value of 	 estimated in �14� �Eq. �9�� for the phase transition
to the appearance of a giant component for a uniform GRGG of corresponding dimension. Sample sizes are large enough that standard error
bars are insignificant.
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sphere �Fig. 5�a��, where a phase transition can clearly be
seen, this supports our conjecture �Sec. III F� that there
should be no phase transition for a nonuniform GRGG and
that the size of the largest component increases smoothly
with increasing connectivity.

In Fig. 6�b� conditional arithmetic and harmonic mean
path lengths are plotted against network size for dimension
m=6 alongside the corresponding plots for a uniform hyper-
sphere of the same dimension �Fig. 6�a��, for mean connec-
tivity 	=12. As mentioned earlier, the mean scaling with
network size is predicted reasonably accurately by the lower
bounds as calculated in Eqs. �73� and �74�. In Figs. 7�b� and
7�a� corresponding path lengths are plotted for small world
ensembles constructed according to the method described in
Sec. IV, with c=1. The plots labeled “random graph” show
arithmetic mean path lengths for an Erdös-Rényi random
graph with the same mean connectivity 	̃ as the correspond-
ing small world ensemble; upper bounds are arithmetic mean
path lengths for random graphs with mean connectivity Nq

as in Eq. �88�. In this case the scaling of arithmetic mean
path length with network size appears to be reasonably well
approximated by that of the corresponding random graph;
there is, however, probably insufficient data to be certain.

C. Example 2: A scale free GRGG

Here we choose the underlying space to be the line seg-
ment �0,1� with standard metric d�x ,y�= �x−y� and degree
distribution X with density:

p�x� = �1 − ��x−� �� 
 1� . �112�

Note that this density �and hence the GRGG� is not uni-
formly continuous. This is basically the situation covered in
�15� �Sec. III A�, but note that scaling in the large network
limit in that paper is not the same as ours; while we hold the
mean degree 	 fixed, there it is assumed that r scales as N−1

�in particular we note that under their scheme mean node
degree blows up with N for ��
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(c) Scale free (Section V C), β = 0.3, κ = 48

1

4

16

64

256

210 211 212 213 214

p
a
th

le
n
g
th

N

arithmetic mean
arithmetic mean lower bound

harmonic mean

(d) Scale free (Section V C), β = 0.6, κ = 48

FIG. 6. Conditional arithmetic and harmonic mean path lengths plotted against network size on a log-log scale for several GRGGs �Sec.
V� estimated in sample with mean connectivity 	 held fixed. The arithmetic �respectively, harmonic� mean lower bound is as calculated from
Eq. �73� �respectively, �74�� �for the scale free ensembles the harmonic mean lower bound is omitted since E�1 /D� does not exist in this
case�.
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We have

��x� = ��x + r�1−�, 0 
 x � r

�x + r�1−� − �x − r�1−�, r 
 x � 1 − r

1 − �x − r�1−�, 1 − r 
 x � 1.

�113�

We may calculate

� = 1 − �1 − r�1−� + �1 − ��r2�1−��B�1 − �,2� − 1;1 − r� ,

�114�

where B�a ,b ;z� denotes the incomplete Beta function and
that, up to leading order for small r:

� ��
2

�1 − ��2

1 − 2�
r , � 


1

2

−
1

2
r lnr , � = 1

2

�1 − ��B�1 − �,2� − 1�r2�1−��, � �
1

2
,

�115�

where B�a ,b� is the Beta function. We may calculate in par-
ticular that

�2 ��
4�1 − ��3

1 − 3�
r2, � 


1

3

−
32

27
r2 lnr , � =

1

3

�1 − ���B„1 − �,− 3�1 − ��… + B„3 − 2�,− 3�1 − ��… − B(2 − �,− 3
2 �1 − ��)]r3�1−��, � �

1

3

�116�

and in general, for n�1 we find that to leading order in r for small r:

�n ��
rn, � 


1

n + 1

− rn lnr , � =
1

n + 1

r�n+1��1−��, � �
1

n + 1
.

�117�

We conclude that for �

1
2 , �n /�n blows up iff n�

1
� −1, while for ��

1
2 , �n /�n always blows up as r→0. The ensemble is

thus always scale free. Simulations also indicate �as postulated earlier� that �n=�n in the large network limit. We may calculate
the first loop moment to be

�3 ��
3�1 − ��3

1 − 3�
r2, � 


1

3

−
8

9
r2 lnr , � =

1

3

2�1 − ���B�1 − �,3� − 2� − B„2�1 − ��,3� − 2…�r3�1−��, � �
1

3
.

�118�

from which we may derive the clustering coefficient C
��3 /�2. We find that in the large network limit C= 3

4 �the
uniformly continuous GRGG value for dimension 1� for 0

��

1
3 and thereafter increases smoothly to 1 as �

approaches 1. We note that in general, for �

1
2 , our scale

free GRGG behaves rather like a uniformly continuous
GRGG with regard to connectivity moments of order n


1
�

−1.
Given mean degree 	 and network size N, let us set, as in

�15�, ��2Nr where r is implicitly defined by solving Eq.

�114� for r with �=	 /N. For the actual degree distribution,
then, the formula derived in �15� �their Eq. �24�� still fur-
nishes a good approximation and for large k yields the power
law P�K=k��k−1/�. Figure 4�c� �respectively, 4�d�� plots the
sampled degree distribution for 	=32, N=216 for �=0.3 �re-
spectively, 0.6�. The “squiggles” for large degree are due to
finite network size effects.

In Fig. 5�c� �respectively, 5�d�� the estimated fraction of
the network occupied by the largest component is plotted
against mean connectivity with increasing network size for
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�=0.3 �respectively, 0.6�. Again, we see no phase transition
�Sec. III F� and the size of the largest component increases
smoothly with increasing connectivity. Note too the differ-
ence in speed and shape of the approach to 1 between the
two cases—it appears that there may be a phase transition
�parametrized by �� of scaling behavior of the large compo-
nent.

In Fig. 6�c� �respectively, 6�d�� conditional arithmetic and
harmonic mean path lengths are plotted against network size
for �=0.3 �respectively, 0.6�, with mean connectivity fixed at
	=48. As remarked earlier, the scaling with network size of
the arithmetic mean �38� is predicted reasonably accurately
by the lower bound as calculated in Eq. �73�. Again we may
construct a small world ensemble according to the procedure
in Sec. IV �Figs. 7�c� and 7�d��. We find that our scale free
GRGG falls into Case I of Proposition 6 precisely when �



1
3 , in which case �2 /�2→ �1−2��2 / ��1−���1−3���; oth-

erwise �2 /�2 blows up and we have Case II. In either case
the resulting small world ensemble is also scale free. In con-

trast to the uniformly continuous GRGG of the previous sec-
tion, the form of scaling of path length with network size is
not clear.

VI. SUMMARY

A major aim of this study was to set up a viable frame-
work for analysis of the effects exerted by spatial embedding
on network structure. In particular, we hope that the formal-
ism of connectivity moments �n, �n, �n �Sec. II B� along
with the mean conditional degree � �Sec. III B� will prove to
furnish useful tools for the analysis of the relationship be-
tween spatial embedding and network structure. We note, for
example:

�A� Structural properties such as clustering and degree
correlations may be expressed directly in terms of the �n, �n,
�n.

�B� The degree distribution is completely characterized by
the conditional mean degree rv �.
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(b) Small world Gaussian (Section V B), dim = 6, κ̃ = 12
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(c) Small world scale free (Section V C), β = 0.3, κ̃ = 48
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FIG. 7. Conditional arithmetic and harmonic mean path lengths plotted against network size on a log scale for several small world SERN
ensembles constructed from GRGGs �Sec. V� according to the method described in Sec. IV, with c=1. The plots labeled “random graph”
show arithmetic mean path lengths for a random graph with the same mean connectivity 	̃ as the corresponding small world ensemble; upper
bounds are arithmetic mean path lengths for random graphs with mean connectivity Nq as in Eq. �88�.
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�C� Necessary and sufficient conditions for a scale free
degree distribution may be expressed succinctly in terms of
limiting properties of the �n.

Other points of significance we have addressed include
the following:

�D� A basic classification of spatial networks into sub-
types �Sec. III C�.

�E� The severe constraining effects of spatial symmetry on
degree distribution �Sec. III C 3�.

�F� The effects of inhomogeneity of the spatial node dis-
tribution on network structure; for example on degree corre-
lation �Secs. III E and V B� and on the �non�existence of
phase transitions �Sec. III F�.

�G� A generalization of the Watts-Strogatz construction
for deriving a small world network from an arbitrary spa-
tially embedded network with nontrivial clustering, which
preserves various structural features of the original network
�Sec. IV�. Our analysis also illustrates the importance of the
connectivity scaling mode in the large network limit and de-
velops some heuristics for calculating bounds on mean path
length �Sec. IV�.

�H� A generalization of random geometric graphs to more
general spatial node distributions �Sec. III C 6�. For a par-
ticularly well-behaved subclass of such networks �the uni-
formly continuous GRGGs� we show that uniformity of the
spatial node distribution is equivalent to a Poisson degree
distribution. We show further that degree correlation is assor-
tative and that nonuniformity in the node distribution con-
tributes positively to degree correlation �Sec. V A�. We also
demonstrate the analytic tractability of our approach through
worked examples of GRGGs �Secs. V B and V C�, including
a scale free example.

There are, inevitably, open questions and areas requiring
clarification and further research. Among these:

�I� We need to develop viable mathematical methods to
analyze the formation of a giant component. Of particular
importance is to prove �or find counterexamples to� our con-
jecture that there is no phase transition if the node distribu-
tion is nonuniform. Similarly, we currently lack the math-

ematical tools to derive more accurate estimates of the
scaling of mean path length with network size.

�J� We demonstrated that for uniformly continuous
GRGGs, degree correlation is always assortative. It seems
likely that this may in fact hold for all GRGGs; specifically,
if our conjecture that �n=�n for arbitrary GRGGs is correct.
Are there, in fact, any SERN ensembles with disassortative
degree correlation? At present we have no counterexample.

�K� With regard to the classification of subclasses of
SERN ensembles, we showed that for uniformly continuous
GRGGs uniformity is equivalent to Poisson. It seems reason-
able to conjecture that this might hold within a broader class
of SERN ensembles. Do there in fact exist SERN ensembles
which are Poisson but not uniform, or uniform but not Pois-
son? Again, we have no example of either. With regard to
GRGGs themselves, it also seems quite likely that one might
be able to broaden the definition to encompass any scaling of
the form ��s�� �̂�s /r� �perhaps with some minimal restric-
tions on the form of the decay function �̂�s /r�� while retain-
ing the results of Sec. V.

�L� Regarding scale free SERN ensembles, the only ex-
amples we have involve a node distribution which is itself of
power law form. Can we find examples of scale free SERN
ensembles which are not, in this sense, a case of “power law
in, power law out”? We know at least that, if so, they cannot
be uniformly continuous GRGGs.

Finally, as regards extending our research, preliminary re-
sults suggest that we may indeed broaden the SERN model
to include nonindependently distributed nodes �and hence
more realistic spatial node distributions�, while still retaining
a large degree of analytic tractability. We should also like to
develop insights into the role of spatial embedding in the
dynamics of processes taking place on networks and—not
least—to investigate the application of our approach to the
understanding of real-world spatial networks.
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