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We review and discuss the structural consequences of embedding a random network within a metric space such
that nodes distributed in this space tend to be connected to those nearby. We find that where the spatial distribution
of nodes is maximally symmetrical some of the structural properties of the resulting networks are similar to those of
random nonspatial networks. However, where the distribution of nodes is inhomogeneous in some way, this ceases
to be the case, with consequences for the distribution of neighborhood sizes within the network, the correlation
between the number of neighbors of connected nodes, and the way in which the largest connected component
of the network grows as the density of edges is increased. We present an overview of these findings in an attempt
to convey the ramifications of spatial embedding to those studying real-world complex systems. © 2010 Wiley

Periodicals, Inc. Complexity 16: 20-28, 2010
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1. INTRODUCTION

he new science of networks [1, 2] aims to generate

insights into complex systems by representing them as

graphs (networks) comprising a number of nodes (parts,
elements, components, and individuals) connected by edges
(connections and interactions). Once represented in this way,
graph-theoretic metrics and analyses can be used to char-
acterize the structural organization of the target complex
systems. These characterizations are helpful in that they can
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suggest mechanisms of growth [3], processes of reconfigu-
ration [4], or other explanatory accounts of complex system
behavior.

The insights, methods, and measures derived from com-
plex networks science may be applied to a vast range of
potential target systems: telecommunication networks, social
affiliation networks, transport networks, epidemics, neural
networks, metabolic pathways, and genetic regulatory net-
works, among many others, see, e.g., [5]. It is attractive to
think that the implications of abstract models of complex
networks might generalize across different domains. This is
one of the reasons behind the excitement generated by com-
plexnetworks. However, it may be expected that real progress
on specific applications might not only require the addition
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of domain-specific knowledge to a general insight but also
sometimes will force researchers to question whether there
are important aspects of complex networks that need further
investigation to make them more widely applicable. Many of
the real systems mentioned present a spatial structure and
often this structure constrains the possible connectivity and
interactions between nodes in the network and their activ-
ity. This motivates an investigation into the role of space on
complex networks.

Traditionally, one popular approach has been to define
classes of random graphs, so called because they are gener-
ated by a random process. By characterizing the properties of
a set of random graphs and explaining how these properties
vary with parameters such as connection density, number of
nodes, and amount of random rewiring of connections, net-
works science can reveal what the generic properties of such
a graph can be expected to be.

For instance, Erdés and Rényi [6-8] defined a very simple
class of random network in which each pair of nodes is con-
nected with probability p. Amongst other things, they showed
that as the density of network connectionsisincreased (i.e., as
p grows), their networks reach a connection density at which
they pass through a very rapid step change in their overall
organization. One such “phase transition” involves the onset
ofagiant component: asubset of nodes that are either directly
or indirectly connected to one another by network paths and
between them comprise the vast majority of the network.
Below a threshold value of p = 1/n (where n is the number of
network nodes) such a giant component is almost certainly
absent from an Erd6s-Rényi network, which will tend to com-
prise many disconnected fragments. Above this threshold, a
single giant component is almost certainly present.

Similarly, Watts and Strogatz [4] showed that gradually
randomly rewiring a regular lattice can quickly generate a
“small-world” graph that retains the high clustering that is
characteristic of the original lattice (the neighbors of a node
are likely to themselves be neighbors!) but also enjoys the rel-
atively short path lengths separating arbitrary pairs of nodes
that is characteristic of Erd6s—Rényi random networks.

The third major random graph model is due to Barabdsi
and Albert, who proposed a random preferential attachment

LIn this article, there is scope for confusion in the meaning of
terms such as “neighbor” or “near” or “close,” each of which
might be interpreted either with respect to the spatial distance
between nodes or with respect to the connectivity of the net-
work. Here, we will refer to a node’s neighbors as those nodes
that are directly connected to it on the network. When neces-
sary this will be explicitly distinguished from nodes that share
the same spatial locale. Similarly, a “path” between two nodes
will always be interpreted in terms of traversing connections
on the network, rather than moving directly through space.

process capable of growing a network that exhibits a scale-
free degree distribution, meaning that the expected number
of neighbors of a randomly chosen node (its expected degree)
follows a power law distribution [3]. Unlike both the Erd6s—
Rényi and Watts-Strogatz models, where a node’s degree
can be expected to be close to the network’s mean degree,
Barabdsi-Albert’s process ensures that many nodes have very
low degree (they are peripheral nodes connected only to a
very small number of neighbors), whereas a few have very
large degree (hubs directly connected to a large proportion of
the network).

There are of course many variants of these models and
alternative random graph models [1, 2, 8]. However, in the
context of the burgeoning networks science literature, the
role of spatial embedding has, arguably, been somewhat
neglected given that the vast majority of real-world complex
systems are subjected to the constraints that result from being
spatially extended (including the problem system identified
with the birth of graph theory itself: Euler’s Seven Bridges
of Konigsberg). Both the Erdés-Rényi and Barabdsi-Albert
models consider nodes to be a-spatial, with no relationship
between nodes other than whether they are connected or not.
The Watts—Strogatz model is different in that it commences
with alattice that can be thought of as a set of points arranged
regularly in some space and connected to their nearest neigh-
bors and then proceeds to erode this spatial organization.
However, little attention is paid to the spatiality of small
worlds, per se.

This is despite the fact that the small-world notion origi-
nated in a set of social network experiments that were explic-
itly geographical in spirit. Travers and Milgram [9] invited
participants in their seminal experiment to send a package to
a recipient identified by name, address, and occupation, but
only via a chain of people known on first-name basis. Results
of the experiment showed that when a package arrived at
its ultimate destination it had passed through on average
between five or six intervening people who had been able to
combine their social and geographic knowledge to achieve a
remarkably short path length between initial sender and final
recipient (but see [10] for a critique of Milgram’s study).

Subsequent studies of spatially embedded networks have
tended to be domain specific and aimed at modeling some
spatial aspect of network formation [11-19] or addressing
somewhat restrictive spatial embeddings [20-23]. This arti-
cle aims, therefore, to take a more general and fundamental
perspective on the constraints on network structure implied
by spatial embedding, drawing heavily on a recent technical
exposition [24].2

2Unless explicitly indicated, evidence and/or arguments sup-
porting the claims and results reported in this article can be
found in Ref. 24.
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Examples of spatially embedded random networks, constructed (a) uniformly on a disc, (b) uniformly on a sphere, and (c) nonuniformly on a plane.

2. OVERVIEW
By a spatially embedded network in the broadest sense we
shall mean the following: network nodes reside in a met-
ric space and the likelihood of a pair of nodes being con-
nected depends in some way on the spatial distance between
them. The space could be a “real” (Euclidean) space or per-
haps some more abstract space suggested by the problem
or model domain (e.g., a political spectrum ranging over far-
right, right-wing, centrist, left-wing, and far-left ideologies).
We generally imagine that network nodes that are nearby in
space have a better chance of being connected than distant
nodes; that is, connection probability decays with distance.
Spatially embedded networks in the above sense have
traditionally been studied in the (restricted) form of ran-
dom geometric graphs (RGGs) [20, 21]. In these networks,
nodes are distributed uniformly at random over some Euclid-
ean space and pairs are connected only if they fall within a
characteristic distance of each other. Studies of RGGs have
generated some insight into their structure, including the
relationship between the amount of clustering and the
dimensionality of the space, and the manner in which a
giant connected component appears as the connection den-
sity is gradually increased. The interested reader can find an
overview of these results in Ref. 22. In Ref. 24, Barnett et al.
introduced a generalization of RGGs, the spatially embed-
ded random networks (SERN) model, where the embedding
space is no longer necessarily Euclidean, connection proba-
bility decay is not restricted to a simple distance cutoff,? and,

3 Although any pair of SERN nodes are either connected, or
not, in general these connections are determined probabilisti-
cally, not deterministically, and we may be required to consider
expectations of graph properties calculated over an ensemble
of networks generated using a particular distance decay func-
tion for a particular spatial distribution of nodes. RGG graphs
are a degenerate case of this scheme in which the probability
of connectance is unity for nodes separated by a distance less
than some value, d, and is zero otherwise.

crucially, the distribution of nodes is no longer required to
be uniform in space. It is the latter feature—the possibility
of spatial inhomogeneity and the consequent variability in
the likelihood of different pairs of nodes being connected
together—that turns out to have a decisive impact on the
structure of the resulting networks, e.g., Figure 1. In analyz-
ing the properties of the SERN model (and in particular the
behavior of various “motif moments”, see Figure 2), we were
able to demonstrate that:

e Where the spatial distribution of nodes is homogeneous
(i.e., there is maximal spatial symmetry) the degree dis-
tribution of a spatially embedded random network is
equivalent to that of a nonspatial random graph.

e Similarly, as the number of connections in such a homo-
geneous spatial graph is increased, a phase transition to
a giant component may be observed, as in nonspatial
random graphs.

* However, if there is spatial inhomogeneity in the distrib-
ution of nodes, then there is evidence to suggest that no
phase transition to a giant connected component occurs;
rather, we conjecture that the expected size of the largest
component will grow smoothly as more edges are added to
the network.

e Spatiallyembedded random networks tend to exhibit assor-
tative degree correlation, with highly connected nodes tend-
ing to be more likely to be connected to each other, and
this correlation is boosted by inhomogeneity in the spatial
distribution of nodes.

e Spatially embedded random networks may exhibit a scale-
free degree distribution, but this requires that there exists a
singularity in the spatial distribution of nodes, i.e., a point
in space near which the density of nodes increases without
limit.

¢ Under reasonable assumptions, we conjecture that ran-
dom geometrics graphs (and a broader class of lattice-
like graphs to which they belong) cannot be small worlds.
However, more generally, spatially embedded small worlds
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Examples of, respectively, chain, fan, and loop motif “moments” implicated in the analysis of spatially embedded random networks. A motif is a distinctive,
recurrent structural network element. A moment is an average of a product of random variables. Motif moments, averaged over an ensemble of networks,
are useful and intuitive building blocks in terms of which various network statistical features may be expressed. For example, the “chain,” “fan,” and “loop”

2 3 4

motifs illustrated appear in the expression for degree correlation.

can exist, and indeed spatial rewiring schemes can create
small-world properties in arbitrary clustered networks.

In the next section, we expand on these results, before
discussing some caveats and qualifications that have to be
borne in mind. In this article, our intention is to explicate the
way in which spatial embedding confers certain properties
on graphs without resorting to mathematical proofs (which
can be found in the original paper [24]).

3. STRUCTURAL PROPERTIES OF SPATIALLY EMBEDDED
RANDOM NETWORKS

3.1. Homogyeneity vs. Inhomogeneity

Upon setting out to explore the general properties of spatially
embedded networks, an obvious place to start is a network
constructed over a random spatial distribution of otherwise
featureless nodes. For instance, we might scatter nodes across
a square patch of space and connect together those that
are closer together than some threshold distance, not car-
ing about any other property of the nodes. Of course, points
near the boundary of the square patch might be nonstan-
dard in their properties, so we might restrict our attention
to part of the space that is far from the boundary. Or per-
haps, rather than consider a square patch, we might consider
points randomly distributed over a sphere which has no prob-
lematic boundaries.* We might also avoid considering spaces
that have holes in them or other incongruities, and we might
also be sure to distribute the nodes according to a uniform
random distribution rather than a distribution that tends to
put more points in some areas than in others. By considering
many networks constructed over many random distributions
of nodes, we can reach expectations of generic network prop-
erties, rather than be distracted by particular peculiarities of

4In fact it turns out that the existence of a boundary is
structurally significant only in restricted circumstances [24].

specific instances of an individual random distribution and
its associated network(s).

The epitome of this approach is the consideration of what
we shall call homogeneous spatial networks: networks con-
structed over a distribution of nodes that is maximally spa-
tially symmetrical. What does this mean? Consider a set of
points distributed uniformly over a sphere. From whichever
angle we choose to look at it, this distribution of points tends
to look the same. If we were to stand on the sphere at the
location of one point and be transported to the location of
another point chosen at random, we would tend not to notice
the difference.

When we consider such networks, in some respects they
resemble Erdés-Rényi random graphs (E-R graphs) con-
structed over nodes that have no spatial location—in an E-R
graph the chance of any two nodes being connected is equal.
For instance, if we count what proportion of network nodes
have no neighbors, or only one neighbor or two neighbors
or three or have 10 neighbors (i.e., we calculate the network’s
degree distribution), we find that, whether we are describing
a nonspatial E-R graph or a homogeneous spatial network,
the degree values follow the same Poisson distribution.®

This makes sense because the Poisson distribution is
known to represent the frequency with which a number of
independent events occur in some unit of time, or, in this
instance, within some unit of spatial area. “Will a node have
three neighbors or two neighbors or some other number?”
turns out to be the same kind of question as “Will this week’s
lottery have three winners or two or some other number?”

5In fact (in the context of a particular class of spatial network)
it can be demonstrated that a Poisson degree distribution may
only arise when nodes are distributed uniformly in space. This
highlights the impact of spatial inhomogeneity on network
structure.
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However, despite their congruent degree distributions,
homogeneous spatial networks are not equivalent to Erd6s—
Rényi graphs. In an E-R graph the chances that two of anode’s
neighbors are connected is the same as the chance that one
of its neighbors is connected to any other randomly chosen
node (as any pair are connected with probability p). However,
in a homogeneous spatial network, as nodes are connected
to those that are nearby, a node’s neighbors tend to be close
together and are therefore more likely to be connected to
each other resulting in more clustering than in an equivalent
Erdés-Rényi graph.

The properties of a particular class of homogeneous spa-
tial networks and whether they are equivalent or not to prop-
erties of an E-R graph have been explored in work on random
geometrics graphs [20, 21]. Here, we are more interested in
exploring properties of the more general class of inhomoge-
neous spatial networks. This is motivated primarily by the
fact that the vast majority of extant real-world networks fall
into this category having variously, edges, holes, more-or-less
sparse/dense regions, nonuniform distributions of nodes, or
other factors that introduce heterogeneity.

Moreover, inhomogeneous spatial networks offer a sec-
ond important advantage in a more fundamental sense.
For homogeneous spatial networks, as was described above,
there is no real difference between one place and another—
every location in the space is equivalent. However, a critical
property of spatial systems must surely be that there are con-
sequences associated with where you are located. Even when
a number of nodes are scattered at random on a sphere, and
there is no tendency to preferentially scatter them in some
places more than in others, the scattering will tend to result
in more or less sparsely populated regions “accidentally.” Of
course, on average and in the limit, all such nodes will tend to
find themselves in identical circumstances. However, in every
single instance of such a system, some nodes will tend to find
themselves in a relatively dense patch of neighbors, whereas
others will find themselves more spatially remote from their
nearest neighbors. This inhomogeneity in the distribution of
nodes is thus fundamental to spatially distributed systems,
and it will tend to be reflected in the network of connections
between nodes if spatial distance between them influences
the likelihood of a connection being formed and maintained.

3.2. Giant Components

One respect in which introducing inhomogeneity in the spa-
tial distribution of nodes has a significant impact is the onset
of agiant component in the network as the density of network
edges is increased.

If we start by considering a population of nodes with
no edges between them, an empty network, and gradually
increase the number of edges that the network contains,
tending to connect together nodes that are closer together,
we initially see a growing number of connected pairs of
nodes. After a while we begin to see network “fragments” each

comprising a small number of sparsely connected nodes.
Over time these fragments tend to grow in size and eventu-
ally coalesce as edges are added that link together previously
disconnected fragments. If the initial distribution of nodes in
space is homogeneous, then there comes a critical value of
edge density when the network transitions from comprising
a large number of isolated fragments to comprising a single
giant connected component that contains the vast major-
ity of nodes: i.e., there is a “phase transition” in the onset of
a giant component. This result was originally shown in the
context of E-R graphs and has been shown to generalize to
homogeneous spatial networks in simulations [21].

However, our simulations support a conjecture that there
will be no such phase transition to the extent that there is ini-
tially any inhomogeneity in the spatial distribution of nodes.
Rather, as edge density increases, the size of the largest con-
nected component of the network grows more smoothly, and
the giant component does not arise abruptly, but arrives more
gradually. This can be understood by noting that the phase
transition relies on coalescence to happen at the same rate
across the entire population.

In order for the size of the largest component to remain
initially small while the first edges are added but then to
rapidly transition to a giant component of much larger size,
network fragments must first grow in size without becoming
connected to each other, reaching a point at which a few addi-
tional edges interconnect a large number of such fragments.
To reach such a point no network parts can be easier to con-
nect together than others as this would smooth out the growth
of the largest component and prevent the phase transition.

Consider a multiple-choice test being taken by a class of
identical student “clones” that are identically capable and
identically well prepared and identically well rested, etc. We
might expect them all to complete the exam at roughly the
same time. As we watched the class at work, we would see an
abrupt transition in the number of students that had com-
pleted the test—before the rapid transition most would be
working on the test, and just afterward the vast majority
would have stopped work. However, in a real classroom stu-
dents vary in many ways and we see a much smoother rate
of completion—not a phase transition. A spatially inhomo-
geneous network exhibits just this kind of variability in the
propensity to become well connected with some parts bene-
fiting from the effects of the inhomogeneity and some parts
suffering from it.

The implications are significant. E-R graphs and homo-
geneous spatial networks of varying size and edge density
are likely to be observed to fall into one of two classes:
either they comprise many small fragments or they feature
a single giant component. Because the transition between
these two classes of network is very abrupt, we are unlikely
to see networks that fall in between the two classes. How-
ever, where real-world networks are spatially embedded and
inhomogeneous, we should expect to encounter networks
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that do fall between the two classes: networks that feature
a number of disconnected components that vary in size, the
largest of which may variously be small, moderately sized,
or giant.

3.3. Degree Correlation

We have already mentioned that spatial graphs can expect to
exhibit a higher degree of clustering than equivalent nonspa-
tial graphs, i.e., a node’s neighbors have an increased chance
of being connected together in a spatial graph. But can we say
more about the character of a node’s neighbors? In particular,
if a node has many neighbors, will that make it more or less
likely that its neighbors are also well connected?

The correlation between a node’s degree (its number of
neighbors) and the average degree of those neighborsis called
degree correlation or assortativity. In a positively assortative
network, high-degree nodes tend to be connected together.
In a negatively assortative (or disassortative) network high-
degree nodes tend to be connected to low-degree nodes. Both
kinds of assortativity may be observed in real-world networks.
For instance, collaborative networks such as coauthorship
graphs and actor-collaboration graphs may exhibit positive
degree correlation, whereas some technological and biolog-
ical systems such as the internet, world wide web, protein
networks, neural nets, and food webs may exhibit negative
degree correlation [25].

By contrast, ErdGs—-Rényi random graphs, Barabdsi-Albert
preferential attachment graphs, and Watts-Strogatz small
worlds all have zero degree correlation; there being no con-
sistent relationship between the degree of connected nodes.
The same is not true of spatial networks, which tend to exhibit
positive (assortative) degree correlation even when they are
homogeneous. In the simplest homogeneous case, the mag-
nitude of this correlation is equal to the degree of clustering
in the network. Moreover, introducing inhomogeneity into
such spatial networks boosts this correlation, with increasing
inhomogeneity leading to increasingly positive assortativity.

It is easy to see why spatial graphs would exhibit assorta-
tive degree correlation. In order that a node achieves higher
than average degree, it must tend to be the case that it is
closer to its neighbors than is the average node—it is in a
well-populated patch. As the nodes to which it is connected
will tend to be close by, they will tend to also benefit from the
local population density and will themselves tend to have a
higher than average degree as a consequence. Conversely,
a low-degree node will tend to be found in a low-density
patch, connected to a small number of similarly disadvan-
taged nodes. As aresult, a node’s degree will tend to be a good
estimate for that of its neighbors. Of course, to the extent
that a spatial network is inhomogeneous, there will be more
disparity between its dense and sparse patches, exacerbating
this assortativity effect.

Itwould be interesting to relate this theoretical result to the
empirical findings mentioned above. To what extent might

the impact of spatial constraints on network formation and
maintenance account for the observed positive and nega-
tive degree correlations in natural, social, and engineered
systems?

3.4. Scale-Free and Small-World Spatial Networks

Can a set of nodes that are identical save for their location
in space be connected together solely on the basis of the dis-
tances between them in order to arrive at a graph that exhibits
scale-free or small-world structure? In both cases, the answer
is no if we limit ourselves to considering the class of ran-
dom geometrics graphs but yes if we are considering the more
general spatially embedded random networks class.

First, can a scale-free degree distribution arise purely as
a consequence of nodes tending to be connected when they
are close in space? Recall that a degree distribution is said
to be scale free when the probability that a randomly cho-
sen node has a particular degree follows a power law. In such
cases, many nodes have very low degree, but a small minority
have extremely high degree. It can be shown that a random
geometric graph (where nodes are distributed uniformly at
random in space) cannot exhibit this type of structure—
where nodes tend to be equidistant from their neighbors,
there tends to be no large disparities in connectivity.

However, scale-free spatial networks are possible where
node distribution is inhomogeneous. In particular, consider
nodes thatare arranged such thatnode density increases at an
accelerating rate as we approach a particular point in space,
and the density at that pointis in effect infinite. If we generate
a population of nodes according to this distribution and then
connect together pairs of nodes that are close together in
space, then a scale-free network can result.

This is an example of “power law in, power law out.” The
scale-free degree distribution reflects our deliberate choice
to distribute the nodes in space in a particular “scale-free”
manner. It may of course be possible to generate a scale-free
spatial network without demanding a singularity in the dis-
tribution of nodes if we allow a more sophisticated method
of connecting nodes, perhaps one that makes some use
of the “rich get richer” dynamic that is brought about by
“preferential attachment” [3].

What of small-world networks, in which, simultaneously,
there is significant clustering (like a lattice, or spatial network)
but also the path between any two randomly chosen nodes
tends to involve only a small number of intervening edges
(like a totally random graph)? First, we can show that, as for
scale-free networks, small worlds cannot occur in random
geometric graphs. Recall that for this class of graph, nodes
are only connected if they are separated by a distance less
than some threshold. As such, “long-range” connections are
outlawed. Although clustering is significant in such graphs,
the average path length separating network nodes tends to
be long—some pairs of nodes are separated by a significant
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spatial distance and consequently getting from one to the
other requires a large number of network “hops.”

We can understand that this is prohibitive of small-world
structure by noting that the classical way to construct a small
world is to start with something like a random geometric
graphs (a lattice) and alter it (by randomly rewiring a few
edges) such that it contains new edges that would be illegal
under the original RGG wiring scheme—they tend to break
connections between pairs of nearby nodes and introduce
connections between arbitrary pairs of nodes that, at least
for the first few rewirings, tend to be separated by a much
longer distance.

However, it is possible to construct spatial small worlds for
the less restrictive class of spatially embedded random net-
works. Specifically, we must consider graphs where, rather
than using a distance threshold to truncate connectivity, we
allow connectivity to decay with distance probabilistically.
For example, we could construct a scheme where there is a
base probability g that any pair of nodes are wired together,
but also an additional probability 1 — g that nodes are wired
together if they are separated by a distance less than some
threshold d. For this scheme, as we consider larger and
larger networks, we see significant clustering and low mean
path length—i.e., small worlds. It is possible to interpret this
scheme as a spatial analog of the original Watts-Strogatz
model with lattice-like local connectivity ensured by the 1 — g
term and longer range connections introduced by the g term.

Interestingly, it can be shown that this approach for gen-
erating a small world can be used for any lattice-like network
(i.e., a network with strong clustering but long path lengths)
and that it brings about small-world properties while pre-
serving many structural aspects of the original network, such
as scale-free or Poisson degree distribution, for instance. By
introducing just enough arbitrary connections to any spatial
network, short path length can be achieved without com-
promising clustering and without radically altering the net-
work’s connectivity structure. In some sense, this emphasizes
the essentially spatial nature of the original Watts-Strogatz
model.

4. CAVEATS AND QUALIFICATIONS

The results described above are true for various ideal-
ized mathematical representations of real-world systems. To
what extent should we understand these results as trans-
ferring to the real world? Unfortunately, several caveats and
qualifications must be borne in mind.

First, unlike the mathematical objects explored here, the
structure of any real-world spatial network is not wholly
determined by the spatial organization of its nodes. The
presence and absence of relationships amongst the parts
of a real-world system can be influenced by more than the
distance between these parts. Shared affinities, shared his-
tories, and other contingencies will also play a part. In the
models explored here, we are interested in understanding

what might be expected to come about purely as a conse-
quence of spatial proximity between nodes influencing their
connectivity. Whatever structures tend to arise in these mod-
els can be understood as a kind of baseline organization that
we can expect to arise “for free” in spatially embedded net-
works [26]. Where real-world spatial networks reveal the kind
of structures exhibited in these models, it is in some sense
unremarkable. Conversely, where such networks depart from
this type of organization it may be at significant cost or as
a result of significant (and possibly interesting) organizing
processes that are not captured in the models presented here.

Second, to reach the results reported in the previous
section, it has been necessary to idealize spatial networks in
various ways. For mathematical tractability, we have followed
others in sometimes considering a space to be populated uni-
formly or by an infinite number of nodes. It is clear that real-
world networks are not like this. There are two main issues
here, one more technical and one more practical. First, we
have made different kinds of idealization at different points
to achieve particular insights. For instance, in this article, we
have only tended to distinguish between “homogeneous” and
“inhomogeneous” spatial networks, which has tended to dis-
guise the more subtle distinctions made between different
ways of idealizing homogeneity in terms of, e.g., uniformity,
continuity, and spatial homogeneity, and the necessity to
restrict analyses to special cases such as generalizations of
random geometrics graphs. To fully understand the scope of
each result, a firm grasp of these idealizations is necessary.
Perhaps more significantly, any and all of these idealizations
will mean that, to some extent, the relatively clean statements
thatwe are able to make about the ideal mathematical objects
will not carry over to real-world networks. Unfortunately, it is
inherently difficult to know how these idealizations play out
in terms of the transferability (or not) of mathematical results
to the real world.® For a full account of the idealizations that
we have made, see Ref. 24.

A third set of more generic concerns are also associated
with the networks science approach to complex systems
exemplified here. First, real-world networks are not static
objects in the way that we (and many other networks sci-
entists) have treated them here. Real networks arise as a
consequence of processes that take place in the real world.
Typically these processes do not stop once a certain number
of edges or nodes are in place. Rather, real-world networks
are constantly being brought about by ongoing processes.
They are thus inherently dynamic and any consistent struc-
tural properties that they exhibit are dynamically maintained
in the face of perturbation and erosion, an aspect which has

8The same problem is true for computational approaches.
Although particular idealizations might be side-stepped by
using numerical methods, or simulations, the issue of ideal-
ization itself cannot be avoided.
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not been treated in this article (or in many of the articles that
we cite, e.g., [3, 4, 8]). Furthermore, the empirical basis for
comparing results from networks science with those from
experimental studies of real-world networks is somewhat
suspect because we can only sample real-world networks
and report the properties of the samples. If our sampling
method is biased in some way, our samples will not be accu-
rate reflections of the underlying real-world network. They
will be distorted. At times it has not been recognized that
a fair comparison between the properties of a model net-
work and evidence from real-world networks must address
this issue of sampling, see, e.g., [27, 28] for a treatment of
this issue in the context of social networks. Finally, it must
be remembered that “networks” do not necessarily exist in
the real world. Cables exist in the real world, connecting
power stations, substations, etc., but the “power network”
is not accounted for by a network of nodes and the edges
between then, because the relevant technological infrastruc-
ture is structurally coupled with a wider context of inputs,
outputs, policies, drivers, and adjacent “networks.” To equate
the power network with a graph representing the lines of
power distribution is to idealize and simplify the real world.
Similarly, children in a playground exist, but the social net-
work representing their relationships is a conceptual frame-
work, a theoretical postulate, or, more plainly, just an idea. Of
course the promise of networks science is that there will be
many cases in which a particular network idea will play a key
role in how we make sense of the phenomena associated with
it, to the extent that we start assigning it some kind of causal
efficacy. In such a case the network idea is no different from
other ideas that only seem more concrete because of their
identification with material structures (e.g., cables and power
stations).

9. GONCLUSIONS AND FUTURE WORK

We have aimed to elucidate the contribution that spatial
embedding makes to the structure of networks, taking as our
starting point a tradition of analyzing the properties of ran-
dom graph ensembles. By considering a more general model
of spatial networks that allows for different relationships
between proximity and connectivity and for inhomogeneous
distributions of nodes in space, we have been able to show
some of the ways in which spatial networks can be expected
to differ from their nonspatial cousins. One motivation for
such analysis is to achieve a new class of null models of graph
structure that control for the (extremely pervasive) influence
of spatial embedding. Another is to achieve a more profound
understanding of the role of spatial constraints in enabling
complex organization.

In achieving these results, we have been able to demon-
strate circumstantial evidence that our approach (in terms of
identifying the “right statistics” to analyze spatial networks,
i.e., motif moments, conditional mean degree, etc., [24]) is
on the right track. However, there are significant gaps in the
analysis that are worth flagging here. First, we have so far
considered graphs that are first constructed and then ana-
lyzed as static objects, rather than addressing the relationship
between spatial processes and the dynamic network struc-
ture that they bring about. Second, we have so far considered
spatial distributions of nodes that do not themselves exhibit
significant structure, in terms of, for instance, separate clus-
ters (something that might be remedied by generating spatial
distributions of nodes using spatial point processes [29]). A
satisfying treatment of these two issues would perhaps relate
them to offer an understanding of how spatial and network
structure mutually inform one another over the lifetime of a
real-world spatially embedded system.
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